These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 21075379

  • 1. Role of the shape of various bacteria in their separation by Microthermal Field-Flow Fractionation.
    Janča J, Halabalová V, Růžička J.
    J Chromatogr A; 2010 Dec 17; 1217(51):8062-71. PubMed ID: 21075379
    [Abstract] [Full Text] [Related]

  • 2. On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles.
    Janca J, Stejskal J.
    J Chromatogr A; 2009 Dec 25; 1216(52):9071-80. PubMed ID: 19552912
    [Abstract] [Full Text] [Related]

  • 3. Micro-thermal field-flow fractionation of bacteria.
    Janca J, Kaspárková V, Halabalová V, Simek L, Růzicka J, Barosová E.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun 01; 852(1-2):512-8. PubMed ID: 17344106
    [Abstract] [Full Text] [Related]

  • 4. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y, Pan X, Chen L, Wan QH.
    J Chromatogr A; 2011 Jun 24; 1218(25):3908-14. PubMed ID: 21592484
    [Abstract] [Full Text] [Related]

  • 5. Characterization of a microscale thermal-electrical field-flow fractionation system.
    Sant HJ, Gale BK.
    J Chromatogr A; 2012 Feb 17; 1225():174-81. PubMed ID: 22226556
    [Abstract] [Full Text] [Related]

  • 6. Continuous two-dimensional field-flow fractionation: a novel technique for continuous separation and collection of macromolecules and particles.
    Vastamaki P, Jussila M, Riekkola ML.
    Analyst; 2005 Apr 17; 130(4):427-32. PubMed ID: 15776150
    [Abstract] [Full Text] [Related]

  • 7. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.
    Contado C, Argazzi R.
    J Chromatogr A; 2011 Jul 08; 1218(27):4179-87. PubMed ID: 21168138
    [Abstract] [Full Text] [Related]

  • 8. Particle size analyses of porous silica and hybrid silica chromatographic support particles. Comparison of flow/hyperlayer field-flow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering.
    Xu Y.
    J Chromatogr A; 2008 May 16; 1191(1-2):40-56. PubMed ID: 18272159
    [Abstract] [Full Text] [Related]

  • 9. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles.
    Yohannes G, Jussila M, Hartonen K, Riekkola ML.
    J Chromatogr A; 2011 Jul 08; 1218(27):4104-16. PubMed ID: 21292269
    [Abstract] [Full Text] [Related]

  • 10. Electrochemical response and separation in cyclic electric field-flow fractionation.
    Chen Z, Chauhan A.
    Electrophoresis; 2007 Mar 08; 28(5):724-39. PubMed ID: 17265539
    [Abstract] [Full Text] [Related]

  • 11. Improved particle counting and size distribution determination of aggregated virus populations by asymmetric flow field-flow fractionation and multiangle light scattering techniques.
    McEvoy M, Razinkov V, Wei Z, Casas-Finet JR, Tous GI, Schenerman MA.
    Biotechnol Prog; 2011 Mar 08; 27(2):547-54. PubMed ID: 21302365
    [Abstract] [Full Text] [Related]

  • 12. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F, Aberg L, Swärd-Nilsson AM, Laurell T.
    Anal Chem; 2007 Jul 15; 79(14):5117-23. PubMed ID: 17569501
    [Abstract] [Full Text] [Related]

  • 13. Application of flow field flow fractionation-ICPMS for the study of uranium binding in bacterial cell suspensions.
    Jackson BP, Ranville JF, Neal AL.
    Anal Chem; 2005 Mar 01; 77(5):1393-7. PubMed ID: 15732923
    [Abstract] [Full Text] [Related]

  • 14. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering.
    Baalousha M, Kammer FV, Motelica-Heino M, Hilal HS, Le Coustumer P.
    J Chromatogr A; 2006 Feb 03; 1104(1-2):272-81. PubMed ID: 16360663
    [Abstract] [Full Text] [Related]

  • 15. An assessment of retention behavior for gold nanorods in asymmetrical flow field-flow fractionation.
    El Hadri H, Gigault J, Tan J, Hackley VA.
    Anal Bioanal Chem; 2018 Nov 03; 410(27):6977-6984. PubMed ID: 30194453
    [Abstract] [Full Text] [Related]

  • 16. A theory-based approach to thermal field-flow fractionation of polyacrylates.
    Runyon JR, Williams SK.
    J Chromatogr A; 2011 Sep 28; 1218(39):7016-22. PubMed ID: 21872869
    [Abstract] [Full Text] [Related]

  • 17. Revealing the size, conformation, and shape of casein micelles and aggregates with asymmetrical flow field-flow fractionation and multiangle light scattering.
    Glantz M, Håkansson A, Lindmark Månsson H, Paulsson M, Nilsson L.
    Langmuir; 2010 Aug 03; 26(15):12585-91. PubMed ID: 20666417
    [Abstract] [Full Text] [Related]

  • 18. Biofouling characteristics using flow field-flow fractionation: effect of bacteria and membrane properties.
    Lee E, Shon HK, Cho J.
    Bioresour Technol; 2010 Mar 03; 101(5):1487-93. PubMed ID: 19735999
    [Abstract] [Full Text] [Related]

  • 19. Fractionation of prion protein aggregates by asymmetrical flow field-flow fractionation.
    Silveira JR, Hughson AG, Caughey B.
    Methods Enzymol; 2006 Mar 03; 412():21-33. PubMed ID: 17046649
    [Abstract] [Full Text] [Related]

  • 20. The shape effect on the retention behaviors of ellipsoidal particles in field-flow fractionation: Theoretical model derivation considering the steric-entropic mode.
    Monjezi S, Schneier M, Choi J, Lee S, Park J.
    J Chromatogr A; 2019 Feb 22; 1587():189-196. PubMed ID: 30558845
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.