These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


410 related items for PubMed ID: 21082456

  • 1. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS, Simões M, Melo LF, Mergulhão FJ.
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [Abstract] [Full Text] [Related]

  • 2. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J, Spirig T, Weber SS, Haagensen JA, Molin S, Hilbi H.
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [Abstract] [Full Text] [Related]

  • 3. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.
    Salek MM, Jones SM, Martinuzzi RJ.
    Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130
    [Abstract] [Full Text] [Related]

  • 4. The control of biofilm formation by hydrodynamics of purified water in industrial distribution system.
    Florjanič M, Kristl J.
    Int J Pharm; 2011 Feb 28; 405(1-2):16-22. PubMed ID: 21129467
    [Abstract] [Full Text] [Related]

  • 5. Influence of flow rate variation on the development of Escherichia coli biofilms.
    Moreira JM, Teodósio JS, Silva FC, Simões M, Melo LF, Mergulhão FJ.
    Bioprocess Biosyst Eng; 2013 Nov 28; 36(11):1787-96. PubMed ID: 23636472
    [Abstract] [Full Text] [Related]

  • 6. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.
    Mangalappalli-Illathu AK, Lawrence JR, Swerhone GD, Korber DR.
    Int J Food Microbiol; 2008 Mar 31; 123(1-2):109-20. PubMed ID: 18261816
    [Abstract] [Full Text] [Related]

  • 7. Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.
    Teodósio JS, Silva FC, Moreira JM, Simões M, Melo LF, Alves MA, Mergulhão FJ.
    Biofouling; 2013 Sep 31; 29(8):953-66. PubMed ID: 23906281
    [Abstract] [Full Text] [Related]

  • 8. Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms.
    Harrison JJ, Ceri H, Badry EA, Roper NJ, Tomlin KL, Turner RJ.
    Can J Microbiol; 2005 Aug 31; 51(8):671-83. PubMed ID: 16234865
    [Abstract] [Full Text] [Related]

  • 9. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities.
    Rochex A, Godon JJ, Bernet N, Escudié R.
    Water Res; 2008 Dec 31; 42(20):4915-22. PubMed ID: 18945468
    [Abstract] [Full Text] [Related]

  • 10. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H, Reiff H, Morgenroth E.
    Biotechnol Bioeng; 2003 Mar 05; 81(5):607-17. PubMed ID: 12514810
    [Abstract] [Full Text] [Related]

  • 11. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H, Lewandowski Z.
    Biotechnol Prog; 2002 Mar 05; 18(1):55-61. PubMed ID: 11822900
    [Abstract] [Full Text] [Related]

  • 12. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions.
    Simões LC, Azevedo N, Pacheco A, Keevil CW, Vieira MJ.
    Biofouling; 2006 Mar 05; 22(1-2):91-9. PubMed ID: 16581673
    [Abstract] [Full Text] [Related]

  • 13. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms.
    Dunsmore BC, Jacobsen A, Hall-Stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P.
    J Ind Microbiol Biotechnol; 2002 Dec 05; 29(6):347-53. PubMed ID: 12483477
    [Abstract] [Full Text] [Related]

  • 14. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P, Dodds I, De Beer D, Scott HL, Boyle JD.
    Biofouling; 2005 Dec 05; 21(3-4):161-8. PubMed ID: 16371336
    [Abstract] [Full Text] [Related]

  • 15. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA, Rogers DP, Mosier DA.
    Foodborne Pathog Dis; 2010 Aug 05; 7(8):935-43. PubMed ID: 20367070
    [Abstract] [Full Text] [Related]

  • 16. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces.
    Ngwai YB, Adachi Y, Ogawa Y, Hara H.
    J Microbiol Immunol Infect; 2006 Aug 05; 39(4):278-91. PubMed ID: 16926973
    [Abstract] [Full Text] [Related]

  • 17. Effect of oxygen limitation and starvation on the benzalkonium chloride susceptibility of Escherichia coli.
    Bjergbaek LA, Haagensen JA, Molin S, Roslev P.
    J Appl Microbiol; 2008 Nov 05; 105(5):1310-7. PubMed ID: 19146483
    [Abstract] [Full Text] [Related]

  • 18. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.
    Chen MJ, Zhang Z, Bott TR.
    Colloids Surf B Biointerfaces; 2005 Jun 25; 43(2):61-71. PubMed ID: 15913966
    [Abstract] [Full Text] [Related]

  • 19. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T, Skali-Lami S, Block JC.
    Biotechnol Bioeng; 2007 Aug 15; 97(6):1550-61. PubMed ID: 17216655
    [Abstract] [Full Text] [Related]

  • 20. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes.
    Simões M, Pereira MO, Vieira MJ.
    Water Res; 2005 Aug 15; 39(2-3):478-86. PubMed ID: 15644256
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.