These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 21082644

  • 1. Binary self-assembly of gold nanowires with nanospheres and nanorods.
    Sánchez-Iglesias A, Grzelczak M, Pérez-Juste J, Liz-Marzán LM.
    Angew Chem Int Ed Engl; 2010 Dec 17; 49(51):9985-9. PubMed ID: 21082644
    [No Abstract] [Full Text] [Related]

  • 2. Ligand-mediated shape control in the solvothermal synthesis of titanium dioxide nanospheres, nanorods and nanowires.
    Gonzalo-Juan I, McBride JR, Dickerson JH.
    Nanoscale; 2011 Sep 01; 3(9):3799-804. PubMed ID: 21845260
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A reagentless amperometric immunosensor for alpha-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode.
    Lu X, Bai H, He P, Cha Y, Yang G, Tan L, Yang Y.
    Anal Chim Acta; 2008 May 19; 615(2):158-64. PubMed ID: 18442521
    [Abstract] [Full Text] [Related]

  • 5. Guest induced morphological transformation from nanospheres to nanowires by hydrogen bond self-assembly.
    Qin L, Yang H, Qin C, Xiang Z, Zhang M, Ding L, Yi T, Yang S.
    Dalton Trans; 2013 Apr 14; 42(14):4790-4. PubMed ID: 23450250
    [Abstract] [Full Text] [Related]

  • 6. Carboxylic Acid enriched nanospheres of semiconductor nanorods for cell imaging.
    Wang L, Li P, Zhuang J, Bai F, Feng J, Yan X, Li Y.
    Angew Chem Int Ed Engl; 2008 Apr 14; 47(6):1054-7. PubMed ID: 18098262
    [No Abstract] [Full Text] [Related]

  • 7. Differential interferences with clinical chemistry assays by gold nanorods, and gold and silica nanospheres.
    Hinkley GK, Carpinone PL, Munson JW, Powers KW, Roberts SM.
    Nanotoxicology; 2015 Feb 14; 9(1):116-25. PubMed ID: 24620736
    [Abstract] [Full Text] [Related]

  • 8. Spatially controlled self-assembly of gold nanoparticles encased in alpha-helical polypeptide nanospheres.
    Morikawa MA, Kimizuka N.
    Chem Commun (Camb); 2005 Oct 14; (38):4866-8. PubMed ID: 16193141
    [Abstract] [Full Text] [Related]

  • 9. Fabrication and self-assembly of hydrophobic gold nanorods.
    Mitamura K, Imae T, Saito N, Takai O.
    J Phys Chem B; 2007 Aug 02; 111(30):8891-8. PubMed ID: 17625825
    [Abstract] [Full Text] [Related]

  • 10. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier.
    García-Rodríguez A, Vila L, Cortés C, Hernández A, Marcos R.
    Part Fibre Toxicol; 2018 Aug 07; 15(1):33. PubMed ID: 30086772
    [Abstract] [Full Text] [Related]

  • 11. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy.
    Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B.
    Langmuir; 2010 Apr 20; 26(8):5428-34. PubMed ID: 20095619
    [Abstract] [Full Text] [Related]

  • 12. Plasmon resonance spectroscopy of gold-in-gallium oxide peapod and core/shell nanowires.
    Wu YJ, Hsieh CH, Chen PH, Li JY, Chou LJ, Chen LJ.
    ACS Nano; 2010 Mar 23; 4(3):1393-8. PubMed ID: 20148595
    [Abstract] [Full Text] [Related]

  • 13. Production of semiconducting gold-DNA nanowires by application of DC bias.
    Joshi RK, West L, Kumar A, Joshi N, Alwarappan S, Kumar A.
    Nanotechnology; 2010 May 07; 21(18):185604. PubMed ID: 20388979
    [Abstract] [Full Text] [Related]

  • 14. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK, Fagan JA, Becker ML, Hudson SD, Fakhri N, Pasquali M.
    ACS Nano; 2009 Jan 27; 3(1):189-96. PubMed ID: 19206266
    [Abstract] [Full Text] [Related]

  • 15. Coordination chemistry approach for the end-to-end assembly of gold nanorods.
    Selvakannan PR, Dumas E, Dumur F, Péchoux C, Beaunier P, Etcheberry A, Sécheresse F, Remita H, Mayer CR.
    J Colloid Interface Sci; 2010 Sep 01; 349(1):93-7. PubMed ID: 20541215
    [Abstract] [Full Text] [Related]

  • 16. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN, Schneider AS, Schütz G, Xu C, Richter G, van Aken PA, Majer G, Spatz JP.
    ACS Nano; 2010 Apr 27; 4(4):1805-12. PubMed ID: 20218667
    [Abstract] [Full Text] [Related]

  • 17. Size-manipulable synthesis of single-crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires.
    Hu CG, Liu H, Lao CS, Zhang LY, Davidovic D, Wang ZL.
    J Phys Chem B; 2006 Jul 27; 110(29):14050-4. PubMed ID: 16854099
    [Abstract] [Full Text] [Related]

  • 18. Beyond spheres: Murphy's silver nanorods and nanowires.
    Zhang Q, Yin Y.
    Chem Commun (Camb); 2013 Jan 11; 49(3):215-7. PubMed ID: 23033219
    [Abstract] [Full Text] [Related]

  • 19. Pressure-driven assembly of spherical nanoparticles and formation of 1D-nanostructure arrays.
    Wu H, Bai F, Sun Z, Haddad RE, Boye DM, Wang Z, Fan H.
    Angew Chem Int Ed Engl; 2010 Nov 02; 49(45):8431-4. PubMed ID: 20669206
    [No Abstract] [Full Text] [Related]

  • 20. pH controlled synthesis of high aspect-ratio gold nanorods.
    Wei Q, Ji J, Shen J.
    J Nanosci Nanotechnol; 2008 Nov 02; 8(11):5708-14. PubMed ID: 19198293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.