These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 21090315
1. [Cellulose degradation and ethanol production of different Clostridium strain]. Fang ZG, Ouyang ZY. Huan Jing Ke Xue; 2010 Aug; 31(8):1926-31. PubMed ID: 21090315 [Abstract] [Full Text] [Related]
2. [Enhanced role of the co-culture of thermophilic anaerobic bacteria on cellulosic ethanol]. Fang ZG. Huan Jing Ke Xue; 2010 Apr; 31(4):1059-65. PubMed ID: 20527192 [Abstract] [Full Text] [Related]
3. Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation. Jiang HL, He Q, He Z, Hemme CL, Wu L, Zhou J. Appl Environ Microbiol; 2013 Mar; 79(5):1580-9. PubMed ID: 23275517 [Abstract] [Full Text] [Related]
4. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. He Q, Hemme CL, Jiang H, He Z, Zhou J. Bioresour Technol; 2011 Oct; 102(20):9586-92. PubMed ID: 21868218 [Abstract] [Full Text] [Related]
5. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Chinn MS, Nokes SE, Strobel HJ. Biotechnol Prog; 2006 Oct; 22(1):53-9. PubMed ID: 16454492 [Abstract] [Full Text] [Related]
6. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners. Froese A, Schellenberg J, Sparling R. Can J Microbiol; 2019 Apr; 65(4):296-307. PubMed ID: 30608879 [Abstract] [Full Text] [Related]
7. Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources. Wushke S, Levin DB, Cicek N, Sparling R. Can J Microbiol; 2013 Oct; 59(10):679-83. PubMed ID: 24102221 [Abstract] [Full Text] [Related]
8. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures. Wang M, Zhao Q, Li L, Niu K, Li Y, Wang F, Jiang B, Liu K, Jiang Y, Fang X. Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932 [Abstract] [Full Text] [Related]
9. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing. Froese AG, Sparling R. Bioprocess Biosyst Eng; 2021 Apr; 44(4):819-830. PubMed ID: 33392746 [Abstract] [Full Text] [Related]
11. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
12. Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields. Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, Ramsay BD, He Z, Wu L, Van Nostrand J, Xu J, Tang YJ, Wiegel J, Phelps TJ, Zhou J. Appl Environ Microbiol; 2011 Nov; 77(22):7998-8008. PubMed ID: 21948836 [Abstract] [Full Text] [Related]
13. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R, Cicek N, Sparling R, Levin D. Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [Abstract] [Full Text] [Related]
14. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Lü Y, Li N, Yuan X, Hua B, Wang J, Ishii M, Igarashi Y, Cui Z. Appl Biochem Biotechnol; 2013 Dec; 171(7):1578-88. PubMed ID: 23975281 [Abstract] [Full Text] [Related]
15. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
16. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C. Carver SM, Nelson MC, Lepistö R, Yu Z, Tuovinen OH. Bioresour Technol; 2012 Jan; 104():424-31. PubMed ID: 22133607 [Abstract] [Full Text] [Related]
17. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK, Ben-Bassat A, Zeikus JG. Appl Environ Microbiol; 1981 Jun; 41(6):1337-43. PubMed ID: 16345787 [Abstract] [Full Text] [Related]
18. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. He Q, Lokken PM, Chen S, Zhou J. Bioresour Technol; 2009 Dec; 100(23):5955-65. PubMed ID: 19608413 [Abstract] [Full Text] [Related]
19. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase. Waeonukul R, Kosugi A, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Prawitwong P, Deng L, Saito M, Mori Y. Bioresour Technol; 2012 Mar; 107():352-7. PubMed ID: 22257861 [Abstract] [Full Text] [Related]
20. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L, Cicek N, Sparling R, Levin D. Biotechnol Bioeng; 2009 Feb 15; 102(3):759-66. PubMed ID: 18828175 [Abstract] [Full Text] [Related] Page: [Next] [New Search]