These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B. Plant Biotechnol J; 2014 Apr 14; 12(3):354-66. PubMed ID: 24283289 [Abstract] [Full Text] [Related]
28. Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. Lacombe S, Nagasaki H, Santi C, Duval D, Piégu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M. BMC Plant Biol; 2008 Dec 02; 8():123. PubMed ID: 19055717 [Abstract] [Full Text] [Related]
29. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). Qiu L, Chen R, Fan Y, Huang X, Luo H, Xiong F, Liu J, Zhang R, Lei J, Zhou H, Wu J, Li Y. BMC Genomics; 2019 Nov 07; 20(1):817. PubMed ID: 31699032 [Abstract] [Full Text] [Related]
32. Identification of potential microRNAs and their targets in Brassica rapa L. Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, Hur Y, Lim YP. Mol Cells; 2011 Jul 07; 32(1):21-37. PubMed ID: 21647586 [Abstract] [Full Text] [Related]
34. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Jones-Rhoades MW, Bartel DP. Mol Cell; 2004 Jun 18; 14(6):787-99. PubMed ID: 15200956 [Abstract] [Full Text] [Related]
35. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. Wu B, Wang M, Ma Y, Yuan L, Lu S. PLoS One; 2012 Jun 18; 7(9):e44385. PubMed ID: 22962612 [Abstract] [Full Text] [Related]
36. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC. PLoS One; 2013 Jun 18; 8(3):e59423. PubMed ID: 23544066 [Abstract] [Full Text] [Related]
37. Expression Profiling and MicroRNA Regulatory Networks of Homeobox Family Genes in Sugarcane Saccharum spontaneum L. Li Y, Wang Y, Feng X, Hua X, Dou M, Yao W, Zhang M, Zhang J. Int J Mol Sci; 2022 Aug 05; 23(15):. PubMed ID: 35955858 [Abstract] [Full Text] [Related]
38. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack. Liu X, Zhang R, Ou H, Gui Y, Wei J, Zhou H, Tan H, Li Y. BMC Plant Biol; 2018 Oct 20; 18(1):250. PubMed ID: 30342477 [Abstract] [Full Text] [Related]
39. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV. Gene; 2015 Oct 15; 571(1):71-80. PubMed ID: 26115767 [Abstract] [Full Text] [Related]
40. Identification of conserved micro-RNAs and their target transcripts in opium poppy (Papaver somniferum L.). Unver T, Parmaksiz I, Dündar E. Plant Cell Rep; 2010 Jul 15; 29(7):757-69. PubMed ID: 20443006 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]