These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
270 related items for PubMed ID: 21093536
1. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings. Yang HM, Macoris Mde L, Galvani KC, Andrighetti MT. Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536 [Abstract] [Full Text] [Related]
2. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Epidemiol Infect; 2009 Aug; 137(8):1188-202. PubMed ID: 19192322 [Abstract] [Full Text] [Related]
3. Assessing the effects of temperature on dengue transmission. Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. Epidemiol Infect; 2009 Aug; 137(8):1179-87. PubMed ID: 19192323 [Abstract] [Full Text] [Related]
4. Modeling the transmission dynamics of dengue fever: implications of temperature effects. Chen SC, Hsieh MH. Sci Total Environ; 2012 Aug 01; 431():385-91. PubMed ID: 22705874 [Abstract] [Full Text] [Related]
5. Modelling the effect of temperature on transmission of dengue. Barbazan P, Guiserix M, Boonyuan W, Tuntaprasart W, Pontier D, Gonzalez JP. Med Vet Entomol; 2010 Mar 01; 24(1):66-73. PubMed ID: 20377733 [Abstract] [Full Text] [Related]
6. Describing the geographic spread of dengue disease by traveling waves. Maidana NA, Yang HM. Math Biosci; 2008 Sep 01; 215(1):64-77. PubMed ID: 18590749 [Abstract] [Full Text] [Related]
7. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Otero M, Solari HG. Math Biosci; 2010 Jan 01; 223(1):32-46. PubMed ID: 19861133 [Abstract] [Full Text] [Related]
8. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Luz PM, Codeço CT, Massad E, Struchiner CJ. Mem Inst Oswaldo Cruz; 2003 Oct 01; 98(7):871-8. PubMed ID: 14765541 [Abstract] [Full Text] [Related]
9. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL. Science; 2009 Jan 02; 323(5910):141-4. PubMed ID: 19119237 [Abstract] [Full Text] [Related]
10. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Otero M, Solari HG, Schweigmann N. Bull Math Biol; 2006 Nov 02; 68(8):1945-74. PubMed ID: 16832731 [Abstract] [Full Text] [Related]
11. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B, Joshi V. J Vector Borne Dis; 2008 Mar 02; 45(1):56-9. PubMed ID: 18399318 [Abstract] [Full Text] [Related]
12. An optimal control problem arising from a dengue disease transmission model. Aldila D, Götz T, Soewono E. Math Biosci; 2013 Mar 02; 242(1):9-16. PubMed ID: 23274179 [Abstract] [Full Text] [Related]
13. Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Takahashi LT, Maidana NA, Ferreira WC, Pulino P, Yang HM. Bull Math Biol; 2005 May 02; 67(3):509-28. PubMed ID: 15820740 [Abstract] [Full Text] [Related]
14. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Urdaneta-Marquez L, Failloux AB. Infect Genet Evol; 2011 Mar 02; 11(2):253-61. PubMed ID: 21167319 [Abstract] [Full Text] [Related]
15. Early determination of the reproductive number for vector-borne diseases: the case of dengue in Brazil. Favier C, Degallier N, Rosa-Freitas MG, Boulanger JP, Costa Lima JR, Luitgards-Moura JF, Menkès CE, Mondet B, Oliveira C, Weimann ET, Tsouris P. Trop Med Int Health; 2006 Mar 02; 11(3):332-40. PubMed ID: 16553913 [Abstract] [Full Text] [Related]
16. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever. Amaku M, Coutinho FA, Raimundo SM, Lopez LF, Nascimento Burattini M, Massad E. Bull Math Biol; 2014 Mar 02; 76(3):697-717. PubMed ID: 24619807 [Abstract] [Full Text] [Related]
17. Polygamy: the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus. Choochote W, Tippawangkosol P, Jitpakdi A, Sukontason KL, Pitasawat B, Sukontason K, Jariyapan N. Southeast Asian J Trop Med Public Health; 2001 Dec 02; 32(4):745-8. PubMed ID: 12041548 [Abstract] [Full Text] [Related]
18. The effect of multiple host contacts on the infectivity of dengue-2 virus-infected Aedes aegypti. Putnam JL, Scott TW. J Parasitol; 1995 Apr 02; 81(2):170-4. PubMed ID: 7707190 [Abstract] [Full Text] [Related]
19. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Focks DA, Brenner RJ, Hayes J, Daniels E. Am J Trop Med Hyg; 2000 Jan 02; 62(1):11-8. PubMed ID: 10761719 [Abstract] [Full Text] [Related]
20. Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013-14. Sardar T, Sasmal SK, Chattopadhyay J. Virulence; 2016 Jan 02; 7(2):187-200. PubMed ID: 26646355 [Abstract] [Full Text] [Related] Page: [Next] [New Search]