These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 21105927

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid.
    Louis J, Leung Q, Pegadaraju V, Reese J, Shah J.
    Mol Plant Microbe Interact; 2010 May; 23(5):618-27. PubMed ID: 20367470
    [Abstract] [Full Text] [Related]

  • 3. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana.
    Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z, Shah J.
    J Exp Bot; 2023 Nov 21; 74(21):6860-6873. PubMed ID: 37696760
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).
    Kim JH, Lee BW, Schroeder FC, Jander G.
    Plant J; 2008 Jun 21; 54(6):1015-26. PubMed ID: 18346197
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis.
    Lü BB, Li XJ, Sun WW, Li L, Gao R, Zhu Q, Tian SM, Fu MQ, Yu HL, Tang XM, Zhang CL, Dong HS.
    Plant Biol (Stuttg); 2013 Sep 21; 15(5):841-50. PubMed ID: 23656500
    [Abstract] [Full Text] [Related]

  • 10. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae.
    Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM.
    J Exp Bot; 2007 Sep 21; 58(10):2537-52. PubMed ID: 17545220
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.
    Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J.
    Phytochemistry; 2006 Nov 21; 67(22):2450-62. PubMed ID: 17049571
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).
    Casteel CL, Yang C, Nanduri AC, De Jong HN, Whitham SA, Jander G.
    Plant J; 2014 Feb 21; 77(4):653-63. PubMed ID: 24372679
    [Abstract] [Full Text] [Related]

  • 16. Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens.
    Louis J, Gobbato E, Mondal HA, Feys BJ, Parker JE, Shah J.
    Plant Physiol; 2012 Apr 21; 158(4):1860-72. PubMed ID: 22353573
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant.
    Nalam VJ, Keereetaweep J, Shah J.
    Plant Signal Behav; 2013 Jan 21; 8(1):e22735. PubMed ID: 23221749
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.