These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
510 related items for PubMed ID: 21110985
1. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Hayat M, Khan A. J Theor Biol; 2011 Feb 21; 271(1):10-7. PubMed ID: 21110985 [Abstract] [Full Text] [Related]
2. Prediction of membrane proteins using split amino acid and ensemble classification. Hayat M, Khan A, Yeasin M. Amino Acids; 2012 Jun 21; 42(6):2447-60. PubMed ID: 21850437 [Abstract] [Full Text] [Related]
3. Discriminating lysosomal membrane protein types using dynamic neural network. Tripathi V, Gupta DK. J Biomol Struct Dyn; 2014 Jun 21; 32(10):1575-82. PubMed ID: 23968467 [Abstract] [Full Text] [Related]
4. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition. Chen YK, Li KB. J Theor Biol; 2013 Feb 07; 318():1-12. PubMed ID: 23137835 [Abstract] [Full Text] [Related]
5. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types. Hayat M, Khan A. Anal Biochem; 2012 May 01; 424(1):35-44. PubMed ID: 22342883 [Abstract] [Full Text] [Related]
6. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. Han GS, Yu ZG, Anh V. J Theor Biol; 2014 Mar 07; 344():31-9. PubMed ID: 24316387 [Abstract] [Full Text] [Related]
7. Classification of membrane protein types using Voting Feature Interval in combination with Chou's Pseudo Amino Acid Composition. Ali F, Hayat M. J Theor Biol; 2015 Nov 07; 384():78-83. PubMed ID: 26297889 [Abstract] [Full Text] [Related]
8. Signal peptide discrimination and cleavage site identification using SVM and NN. Kazemian HB, Yusuf SA, White K. Comput Biol Med; 2014 Feb 07; 45():98-110. PubMed ID: 24480169 [Abstract] [Full Text] [Related]
9. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble. Naveed M, Khan A. Amino Acids; 2012 May 07; 42(5):1809-23. PubMed ID: 21505826 [Abstract] [Full Text] [Related]
10. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Li ZC, Zhou XB, Dai Z, Zou XY. Amino Acids; 2009 Jul 07; 37(2):415-25. PubMed ID: 18726140 [Abstract] [Full Text] [Related]
14. MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM. Hayat M, Khan A. J Theor Biol; 2012 Jan 07; 292():93-102. PubMed ID: 22001079 [Abstract] [Full Text] [Related]
15. Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition. Afridi TH, Khan A, Lee YS. Amino Acids; 2012 Apr 07; 42(4):1443-54. PubMed ID: 21445589 [Abstract] [Full Text] [Related]
16. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. Ahmad K, Waris M, Hayat M. J Membr Biol; 2016 Jun 07; 249(3):293-304. PubMed ID: 26746980 [Abstract] [Full Text] [Related]
17. A novel method for predicting protein subcellular localization based on pseudo amino acid composition. Ma J, Gu H. BMB Rep; 2010 Oct 07; 43(10):670-6. PubMed ID: 21034529 [Abstract] [Full Text] [Related]
18. Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Chen W, Lin H. Comput Biol Med; 2012 Apr 07; 42(4):504-7. PubMed ID: 22297432 [Abstract] [Full Text] [Related]
19. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion. Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY. Amino Acids; 2006 Jun 07; 30(4):461-8. PubMed ID: 16773245 [Abstract] [Full Text] [Related]
20. iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou's pseudo amino acid composition. Arif M, Hayat M, Jan Z. J Theor Biol; 2018 Apr 07; 442():11-21. PubMed ID: 29337263 [Abstract] [Full Text] [Related] Page: [Next] [New Search]