These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 2111259

  • 1. The role of histidine residues in the alpha toxin of Clostridium perfringens.
    Titball RW, Rubidge T.
    FEMS Microbiol Lett; 1990 Mar 15; 56(3):261-5. PubMed ID: 2111259
    [Abstract] [Full Text] [Related]

  • 2. The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties.
    Justin N, Walker N, Bullifent HL, Songer G, Bueschel DM, Jost H, Naylor C, Miller J, Moss DS, Titball RW, Basak AK.
    Biochemistry; 2002 May 21; 41(20):6253-62. PubMed ID: 12009886
    [Abstract] [Full Text] [Related]

  • 3. Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin.
    Nagahama M, Okagawa Y, Nakayama T, Nishioka E, Sakurai J.
    J Bacteriol; 1995 Mar 21; 177(5):1179-85. PubMed ID: 7868589
    [Abstract] [Full Text] [Related]

  • 4. The carboxy-terminal C2-like domain of the alpha-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition.
    Guillouard I, Alzari PM, Saliou B, Cole ST.
    Mol Microbiol; 1997 Dec 21; 26(5):867-76. PubMed ID: 9426125
    [Abstract] [Full Text] [Related]

  • 5. Role of tryptophan-1 in hemolytic and phospholipase C activities of Clostridium perfringens alpha-toxin.
    Nagahama M, Mukai M, Ochi S, Sakurai J.
    Microbiol Immunol; 2000 Dec 21; 44(7):585-9. PubMed ID: 10981831
    [Abstract] [Full Text] [Related]

  • 6. Analysis of protection afforded by a Clostridium perfringens alpha-toxoid against heterologous clostridial phospholipases C.
    Neeson BN, Clark GC, Atkins HS, Lingard B, Titball RW.
    Microb Pathog; 2007 Oct 21; 43(4):161-5. PubMed ID: 17604945
    [Abstract] [Full Text] [Related]

  • 7. Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities.
    Saint-Joanis B, Garnier T, Cole ST.
    Mol Gen Genet; 1989 Nov 21; 219(3):453-60. PubMed ID: 2560137
    [Abstract] [Full Text] [Related]

  • 8. Site-specific mutagenesis of Clostridium perfringens alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities.
    Nagahama M, Nakayama T, Michiue K, Sakurai J.
    Infect Immun; 1997 Aug 21; 65(8):3489-92. PubMed ID: 9234819
    [Abstract] [Full Text] [Related]

  • 9. Purification of alpha toxin from Clostridium perfringens: phospholipase C.
    Jolivet-Reynaud C, Moreau H, Alouf JE.
    Methods Enzymol; 1988 Aug 21; 165():91-4. PubMed ID: 2906730
    [No Abstract] [Full Text] [Related]

  • 10. Structure of the key toxin in gas gangrene.
    Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, Basak AK.
    Nat Struct Biol; 1998 Aug 21; 5(8):738-46. PubMed ID: 9699639
    [Abstract] [Full Text] [Related]

  • 11. Differences in the carboxy-terminal (Putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes.
    Jepson M, Howells A, Bullifent HL, Bolgiano B, Crane D, Miller J, Holley J, Jayasekera P, Titball RW.
    Infect Immun; 1999 Jul 21; 67(7):3297-301. PubMed ID: 10377104
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Identification of residues in the carboxy-terminal domain of Clostridium perfringens alpha-toxin (phospholipase C) which are required for its biological activities.
    Walker N, Holley J, Naylor CE, Flores-Díaz M, Alape-Girón A, Carter G, Carr FJ, Thelestam M, Keyte M, Moss DS, Basak AK, Miller J, Titball RW.
    Arch Biochem Biophys; 2000 Dec 01; 384(1):24-30. PubMed ID: 11147832
    [Abstract] [Full Text] [Related]

  • 14. Expression and purification of functional Clostridium perfringens alpha and epsilon toxins in Escherichia coli.
    Zhao Y, Kang L, Gao S, Zhou Y, Su L, Xin W, Su Y, Wang J.
    Protein Expr Purif; 2011 Jun 01; 77(2):207-13. PubMed ID: 21300155
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Role of the C-domain in the biological activities of Clostridium perfringens alpha-toxin.
    Nagahama M, Mukai M, Morimitsu S, Ochi S, Sakurai J.
    Microbiol Immunol; 2002 Jun 01; 46(10):647-55. PubMed ID: 12477243
    [Abstract] [Full Text] [Related]

  • 17. Weakly beta-haemolytic human intestinal spirochaetes antagonize the haemolytic activity of Clostridium perfringens alpha-toxin producer.
    Calderaro A, Dettori G, Grillo R, Cattani P, Ragni P, Guégan R, Fadda G, Chezzi C.
    New Microbiol; 2001 Apr 01; 24(2):125-36. PubMed ID: 11346295
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.
    Fatmawati NN, Sakaguchi Y, Suzuki T, Oda M, Shimizu K, Yamamoto Y, Sakurai J, Matsushita O, Oguma K.
    Acta Med Okayama; 2013 Apr 01; 67(1):9-18. PubMed ID: 23439504
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.