These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM. Brain Res Bull; 2012 Oct 01; 89(1-2):16-21. PubMed ID: 22814095 [Abstract] [Full Text] [Related]
6. The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Curthoys IS, Vulovic V, Burgess AM, Cornell ED, Mezey LE, Macdougall HG, Manzari L, McGarvie LA. Ann N Y Acad Sci; 2011 Sep 01; 1233():231-41. PubMed ID: 21950999 [Abstract] [Full Text] [Related]
7. Input-output functions of vestibular afferent responses to air-conducted clicks in rats. Zhu H, Tang X, Wei W, Maklad A, Mustain W, Rabbitt R, Highstein S, Allison J, Zhou W. J Assoc Res Otolaryngol; 2014 Feb 01; 15(1):73-86. PubMed ID: 24297262 [Abstract] [Full Text] [Related]
8. Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig. Chihara Y, Wang V, Brown DJ. Exp Brain Res; 2013 Aug 01; 229(2):157-70. PubMed ID: 23780310 [Abstract] [Full Text] [Related]
9. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons. Straka H, Holler S, Goto F. J Neurophysiol; 2002 Nov 01; 88(5):2287-301. PubMed ID: 12424270 [Abstract] [Full Text] [Related]
10. Otolithic Receptor Mechanisms for Vestibular-Evoked Myogenic Potentials: A Review. Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L. Front Neurol; 2018 Nov 01; 9():366. PubMed ID: 29887827 [Abstract] [Full Text] [Related]
11. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence. Curthoys IS. Exp Brain Res; 2017 Apr 01; 235(4):957-972. PubMed ID: 28130556 [Abstract] [Full Text] [Related]
13. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Curthoys IS, Burgess AM, Goonetilleke SC. Hear Res; 2019 Mar 01; 373():59-70. PubMed ID: 30599427 [Abstract] [Full Text] [Related]
14. A review of the scientific basis and practical application of a new test of utricular function--ocular vestibular-evoked myogenic potentials to bone-conducted vibration. Curthoys IS, Manzari L, Smulders YE, Burgess AM. Acta Otorhinolaryngol Ital; 2009 Aug 01; 29(4):179-86. PubMed ID: 20161874 [Abstract] [Full Text] [Related]
15. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function. Curthoys IS, MacDougall HG, Vidal PP, de Waele C. Front Neurol; 2017 Aug 01; 8():117. PubMed ID: 28424655 [Abstract] [Full Text] [Related]
16. Superior Canal Dehiscence Syndrome: Relating Clinical Findings With Vestibular Neural Responses From a Guinea Pig Model. Dlugaiczyk J, Burgess AM, Goonetilleke SC, Sokolic L, Curthoys IS. Otol Neurotol; 2019 Apr 01; 40(4):e406-e414. PubMed ID: 30870375 [Abstract] [Full Text] [Related]
17. Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Young ED, Fernández C, Goldberg JM. Acta Otolaryngol; 1977 Apr 01; 84(5-6):352-60. PubMed ID: 303426 [Abstract] [Full Text] [Related]
18. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. Dickman JD, Angelaki DE. J Neurophysiol; 2002 Dec 01; 88(6):3518-33. PubMed ID: 12466465 [Abstract] [Full Text] [Related]
19. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Curthoys IS. Clin Neurophysiol; 2010 Feb 01; 121(2):132-44. PubMed ID: 19897412 [Abstract] [Full Text] [Related]
20. In vivo recording of the vestibular microphonic in mammals. Pastras CJ, Curthoys IS, Brown DJ. Hear Res; 2017 Oct 01; 354():38-47. PubMed ID: 28850921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]