These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 21116526
21. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Wei H, Li B, Li J, Wang E, Dong S. Chem Commun (Camb); 2007 Sep 28; (36):3735-7. PubMed ID: 17851611 [Abstract] [Full Text] [Related]
22. Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin A in buffer systems. Moon J, Kim G, Lee S. J Nanosci Nanotechnol; 2013 Nov 28; 13(11):7245-9. PubMed ID: 24245237 [Abstract] [Full Text] [Related]
23. Comparison of In-Solution Biorecognition Properties of Aptamers against Ochratoxin A. McKeague M, Velu R, De Girolamo A, Valenzano S, Pascale M, Smith M, DeRosa MC. Toxins (Basel); 2016 Nov 15; 8(11):. PubMed ID: 27854269 [Abstract] [Full Text] [Related]
24. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. Wang C, Qian J, Wang K, Hua M, Liu Q, Hao N, You T, Huang X. ACS Appl Mater Interfaces; 2015 Dec 09; 7(48):26865-73. PubMed ID: 26524349 [Abstract] [Full Text] [Related]
25. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Yuan J, Deng D, Lauren DR, Aguilar MI, Wu Y. Anal Chim Acta; 2009 Dec 10; 656(1-2):63-71. PubMed ID: 19932816 [Abstract] [Full Text] [Related]
26. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L, Li D, Cui C, Zhao Y, Guo Z. Biosens Bioelectron; 2017 Jan 15; 87():136-141. PubMed ID: 27542086 [Abstract] [Full Text] [Related]
27. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W. Anal Chim Acta; 2012 Nov 13; 753():27-31. PubMed ID: 23107133 [Abstract] [Full Text] [Related]
28. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Sheng L, Ren J, Miao Y, Wang J, Wang E. Biosens Bioelectron; 2011 Apr 15; 26(8):3494-9. PubMed ID: 21334186 [Abstract] [Full Text] [Related]
29. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. Wu Y, Zhan S, Wang F, He L, Zhi W, Zhou P. Chem Commun (Camb); 2012 May 11; 48(37):4459-61. PubMed ID: 22453203 [Abstract] [Full Text] [Related]
30. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Anal Chem; 2009 Feb 15; 81(4):1660-8. PubMed ID: 19159221 [Abstract] [Full Text] [Related]
32. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Qi Y, Li B. Chemistry; 2011 Feb 01; 17(5):1642-8. PubMed ID: 21268167 [Abstract] [Full Text] [Related]
33. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C. Analyst; 2009 Jul 01; 134(7):1355-60. PubMed ID: 19562201 [Abstract] [Full Text] [Related]
34. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Lv L, Jin Y, Kang X, Zhao Y, Cui C, Guo Z. Food Chem; 2018 May 30; 249():45-50. PubMed ID: 29407930 [Abstract] [Full Text] [Related]