These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


470 related items for PubMed ID: 21117722

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A k-space Green's function solution for acoustic initial value problems in homogeneous media with power law absorption.
    Treeby BE, Cox BT.
    J Acoust Soc Am; 2011 Jun; 129(6):3652-60. PubMed ID: 21682390
    [Abstract] [Full Text] [Related]

  • 3. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian.
    Treeby BE, Cox BT.
    J Acoust Soc Am; 2014 Oct; 136(4):1499-510. PubMed ID: 25324054
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M, Waxler R, Forssén J.
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F, Holm S.
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [Abstract] [Full Text] [Related]

  • 9. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
    Holm S, Näsholm SP.
    Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745
    [Abstract] [Full Text] [Related]

  • 10. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE, Jaros J, Rendell AP, Cox BT.
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [Abstract] [Full Text] [Related]

  • 11. One-dimensional transport equation models for sound energy propagation in long spaces: theory.
    Jing Y, Larsen EW, Xiang N.
    J Acoust Soc Am; 2010 Apr; 127(4):2312-22. PubMed ID: 20370013
    [Abstract] [Full Text] [Related]

  • 12. Consistent modeling of boundaries in acoustic finite-difference time-domain simulations.
    Häggblad J, Engquist B.
    J Acoust Soc Am; 2012 Sep; 132(3):1303-10. PubMed ID: 22978858
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.
    Oba RM.
    J Acoust Soc Am; 2010 Jul; 128(1):39-49. PubMed ID: 20649199
    [Abstract] [Full Text] [Related]

  • 16. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y, Cleveland RO.
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y, Xiang N.
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.