These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


101 related items for PubMed ID: 2112409

  • 1. New evidence for the dimeric nature of NADH:Q oxidoreductase in bovine-heart submitochondrial particles.
    van Belzen R, van Gaalen MC, Cuypers PA, Albracht SP.
    Biochim Biophys Acta; 1990 Jun 01; 1017(2):152-9. PubMed ID: 2112409
    [Abstract] [Full Text] [Related]

  • 2. The pathway of electron transfer in NADH:Q oxidoreductase.
    van Belzen R, Albracht SP.
    Biochim Biophys Acta; 1989 May 30; 974(3):311-20. PubMed ID: 2499359
    [Abstract] [Full Text] [Related]

  • 3. Evidence for three separate electron flow pathways through Complex I: an inhibitor study.
    Anderson WM, Trgovcich-Zacok D.
    Biochim Biophys Acta; 1995 Jun 30; 1230(3):186-93. PubMed ID: 7619835
    [Abstract] [Full Text] [Related]

  • 4. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme.
    Albracht SP, Bakker PT.
    Biochim Biophys Acta; 1986 Jul 23; 850(3):423-8. PubMed ID: 3015207
    [Abstract] [Full Text] [Related]

  • 5. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach.
    Vuokila PT, Hassinen IE.
    Biochim Biophys Acta; 1989 May 08; 974(2):219-22. PubMed ID: 2540836
    [Abstract] [Full Text] [Related]

  • 6. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. I. Pre-steady-state kinetics with NADPH.
    Bakker PT, Albracht SP.
    Biochim Biophys Acta; 1986 Jul 23; 850(3):413-22. PubMed ID: 3015206
    [Abstract] [Full Text] [Related]

  • 7. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G.
    Biochemistry; 1996 Feb 27; 35(8):2705-16. PubMed ID: 8611577
    [Abstract] [Full Text] [Related]

  • 8. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase.
    Krishnamoorthy G, Hinkle PC.
    J Biol Chem; 1988 Nov 25; 263(33):17566-75. PubMed ID: 2846570
    [Abstract] [Full Text] [Related]

  • 9. On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase.
    Schewe T, Albracht SP, Ludwig P.
    Biochim Biophys Acta; 1981 Jul 25; 636(2):210-7. PubMed ID: 6269601
    [Abstract] [Full Text] [Related]

  • 10. NN'-dicyclohexylcarbodi-imide-sensitivity of bovine heart mitochondrial NADH: ubiquinone oxidoreductase. Inhibition of activity and binding to subunits.
    Vuokila PT, Hassinen IE.
    Biochem J; 1988 Jan 15; 249(2):339-44. PubMed ID: 3124826
    [Abstract] [Full Text] [Related]

  • 11. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K, Minakami S.
    Biochem J; 1979 Apr 15; 180(1):129-35. PubMed ID: 39543
    [Abstract] [Full Text] [Related]

  • 12. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB.
    Biokhimiia; 1990 Feb 15; 55(2):195-200. PubMed ID: 2111181
    [Abstract] [Full Text] [Related]

  • 13. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H, Wakai M, Ozawa T.
    Biochem Int; 1986 Aug 15; 13(2):351-7. PubMed ID: 3094534
    [Abstract] [Full Text] [Related]

  • 14. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J, Montelius J, Bäckström D, Ernster L.
    Biochim Biophys Acta; 1978 Mar 13; 501(3):370-80. PubMed ID: 24468
    [Abstract] [Full Text] [Related]

  • 15. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+.
    Ramsay RR, Singer TP.
    Biochem Biophys Res Commun; 1992 Nov 30; 189(1):47-52. PubMed ID: 1333196
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA, Berden JA, Kemp A, Slater EC.
    Biochim Biophys Acta; 1985 Aug 28; 809(1):81-9. PubMed ID: 2862915
    [Abstract] [Full Text] [Related]

  • 18. The effects of lipid fluidity on the rotational diffusion of complex I and complex III in reconstituted NADH-cytochrome c oxidoreductase.
    Poore VM, Fitzsimons JT, Ragan CI.
    Biochim Biophys Acta; 1982 Dec 08; 693(1):113-24. PubMed ID: 6295476
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms.
    Yagi T.
    Arch Biochem Biophys; 1990 Sep 08; 281(2):305-11. PubMed ID: 2118334
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.