These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 21125547

  • 1. Vanilloid derivatives as tyrosinase inhibitors driven by virtual screening-based QSAR models.
    Rescigno A, Casañola-Martin GM, Sanjust E, Zucca P, Marrero-Ponce Y.
    Drug Test Anal; 2011 Mar; 3(3):176-81. PubMed ID: 21125547
    [Abstract] [Full Text] [Related]

  • 2. Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation.
    Casañola-Martin GM, Marrero-Ponce Y, Khan MT, Khan SB, Torrens F, Pérez-Jiménez F, Rescigno A, Abad C.
    Chem Biol Drug Des; 2010 Dec; 76(6):538-45. PubMed ID: 20964806
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Ligand-based computer-aided discovery of tyrosinase inhibitors. Applications of the TOMOCOMD-CARDD method to the elucidation of new compounds.
    Marrero-Ponce Y, Casañola-Martín GM, Khan MT, Torrens F, Rescigno A, Abad C.
    Curr Pharm Des; 2010 Dec; 16(24):2601-24. PubMed ID: 20642427
    [Abstract] [Full Text] [Related]

  • 5. Prediction of tyrosinase inhibition activity using atom-based bilinear indices.
    Marrero-Ponce Y, Khan MT, Casañola Martín GM, Ather A, Sultankhodzhaev MN, Torrens F, Rotondo R.
    ChemMedChem; 2007 Apr; 2(4):449-78. PubMed ID: 17366651
    [Abstract] [Full Text] [Related]

  • 6. Bond-based 2D TOMOCOMD-CARDD approach for drug discovery: aiding decision-making in 'in silico' selection of new lead tyrosinase inhibitors.
    Marrero-Ponce Y, Khan MT, Casañola-Martín GM, Ather A, Sultankhodzhaev MN, García-Domenech R, Torrens F, Rotondo R.
    J Comput Aided Mol Des; 2007 Apr; 21(4):167-88. PubMed ID: 17333484
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays.
    Casañola-Martín GM, Marrero-Ponce Y, Khan MT, Ather A, Khan KM, Torrens F, Rotondo R.
    Eur J Med Chem; 2007 Apr; 42(11-12):1370-81. PubMed ID: 17637486
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Quantitative structure-activity relationship studies of mushroom tyrosinase inhibitors.
    Xue CB, Luo WC, Ding Q, Liu SZ, Gao XX.
    J Comput Aided Mol Des; 2008 May; 22(5):299-309. PubMed ID: 18256890
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In silico modelling of azole derivatives with tyrosinase inhibition ability: Application of the models for activity prediction of new compounds.
    De B, Adhikari I, Nandy A, Saha A, Goswami BB.
    Comput Biol Chem; 2018 Jun; 74():105-114. PubMed ID: 29574329
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.