These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 21130188

  • 1. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.
    Wu ZY, Hill RG, Yue S, Nightingale D, Lee PD, Jones JR.
    Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188
    [Abstract] [Full Text] [Related]

  • 2. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.
    San Miguel B, Kriauciunas R, Tosatti S, Ehrbar M, Ghayor C, Textor M, Weber FE.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1023-33. PubMed ID: 20694969
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA, Rizkalla AS, Mequanint K.
    Langmuir; 2010 Dec 07; 26(23):18340-8. PubMed ID: 21050002
    [Abstract] [Full Text] [Related]

  • 4. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ, Thouas GA.
    Acta Biomater; 2011 Oct 07; 7(10):3616-26. PubMed ID: 21689791
    [Abstract] [Full Text] [Related]

  • 5. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.
    Erol MM, Mouriňo V, Newby P, Chatzistavrou X, Roether JA, Hupa L, Boccaccini AR.
    Acta Biomater; 2012 Feb 07; 8(2):792-801. PubMed ID: 22040685
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of 3-D bioactive glass scaffolds dissolution in a perfusion flow system with X-ray microtomography.
    Yue S, Lee PD, Poologasundarampillai G, Jones JR.
    Acta Biomater; 2011 Jun 07; 7(6):2637-43. PubMed ID: 21316489
    [Abstract] [Full Text] [Related]

  • 7. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR, Ehrenfried LM, Hench LL.
    Biomaterials; 2006 Mar 07; 27(7):964-73. PubMed ID: 16102812
    [Abstract] [Full Text] [Related]

  • 8. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.
    Renghini C, Komlev V, Fiori F, Verné E, Baino F, Vitale-Brovarone C.
    Acta Biomater; 2009 May 07; 5(4):1328-37. PubMed ID: 19038589
    [Abstract] [Full Text] [Related]

  • 9. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F.
    J Biomater Appl; 2011 Nov 07; 26(4):465-89. PubMed ID: 20566654
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC, Leu MC, Hilmas GE, Brown RF, Velez M.
    Biofabrication; 2011 Jun 07; 3(2):025004. PubMed ID: 21636879
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C, Zhou Y, Lin C, Chang J, Xiao Y.
    Acta Biomater; 2012 Oct 07; 8(10):3805-15. PubMed ID: 22750735
    [Abstract] [Full Text] [Related]

  • 17. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds.
    Zhang H, Ye XJ, Li JS.
    Biomed Mater; 2009 Aug 07; 4(4):045007. PubMed ID: 19605959
    [Abstract] [Full Text] [Related]

  • 18. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future.
    Baino F, Vitale-Brovarone C.
    J Biomed Mater Res A; 2011 Jun 15; 97(4):514-35. PubMed ID: 21465645
    [Abstract] [Full Text] [Related]

  • 19. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid.
    Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J.
    J Biomed Mater Res A; 2012 May 15; 100(5):1347-55. PubMed ID: 22374752
    [Abstract] [Full Text] [Related]

  • 20. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C, Ramaswamy Y, Zreiqat H.
    Acta Biomater; 2010 Jun 15; 6(6):2237-45. PubMed ID: 20018260
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.