These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Highly sensitive tin oxide hollow microspheres and nanosheets to ethanol gas prepared by hydrothermal method. Firooz AA, Mahjoub AR, Khodadadi AA, Shahrjerdi A. J Nanosci Nanotechnol; 2010 Sep; 10(9):6049-55. PubMed ID: 21133147 [Abstract] [Full Text] [Related]
4. Enhanced Gas Sensing Properties of SnO2 Hollow Spheres Decorated with CeO2 Nanoparticles Heterostructure Composite Materials. Liu J, Dai M, Wang T, Sun P, Liang X, Lu G, Shimanoe K, Yamazoe N. ACS Appl Mater Interfaces; 2016 Mar; 8(10):6669-77. PubMed ID: 26910311 [Abstract] [Full Text] [Related]
5. Au-Loaded Hierarchical MoO3 Hollow Spheres with Enhanced Gas-Sensing Performance for the Detection of BTX (Benzene, Toluene, And Xylene) And the Sensing Mechanism. Sui L, Zhang X, Cheng X, Wang P, Xu Y, Gao S, Zhao H, Huo L. ACS Appl Mater Interfaces; 2017 Jan 18; 9(2):1661-1670. PubMed ID: 28009163 [Abstract] [Full Text] [Related]
6. Gas Sensing Properties of ZnO-SnO2 Nanostructures. Chen W, Li Q, Xu L, Zeng W. J Nanosci Nanotechnol; 2015 Feb 18; 15(2):1245-52. PubMed ID: 26353640 [Abstract] [Full Text] [Related]
7. Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO2 toward a Superior Chemical Sensor. Jang JS, Yu S, Choi SJ, Kim SJ, Koo WT, Kim ID. Small; 2016 Nov 18; 12(43):5989-5997. PubMed ID: 27622572 [Abstract] [Full Text] [Related]
8. Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection. Zou Y, Chen S, Sun J, Liu J, Che Y, Liu X, Zhang J, Yang D. ACS Sens; 2017 Jul 28; 2(7):897-902. PubMed ID: 28750517 [Abstract] [Full Text] [Related]
10. Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ullah H, Khan I, Yamani ZH, Qurashi A. Ultrason Sonochem; 2017 Jan 28; 34():484-490. PubMed ID: 27773272 [Abstract] [Full Text] [Related]
11. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage. Ding YL, Wen Y, van Aken PA, Maier J, Yu Y. Nanoscale; 2014 Oct 07; 6(19):11411-8. PubMed ID: 25148613 [Abstract] [Full Text] [Related]
12. Designing SnO2 Nanostructure-Based Sensors with Tailored Selectivity toward Propanol and Ethanol Vapors. Motsoeneng RG, Kortidis I, Ray SS, Motaung DE. ACS Omega; 2019 Aug 27; 4(9):13696-13709. PubMed ID: 31497687 [Abstract] [Full Text] [Related]
13. Preparation of SnO2 nanoparticles by hard template method for high selectivity gas sensors. Zhang H, Wang L, Tan Z, Li Z, Ding G, Jiao Z, Gu P. J Nanosci Nanotechnol; 2011 Dec 27; 11(12):11023-7. PubMed ID: 22409048 [Abstract] [Full Text] [Related]
14. Improvement of H2S sensing properties of SnO2-based thick film gas sensors promoted with MoO3 and NiO. Lee SC, Kim SY, Hwang BW, Jung SY, Ragupathy D, Son IS, Lee DD, Kim JC. Sensors (Basel); 2013 Mar 19; 13(3):3889-901. PubMed ID: 23519347 [Abstract] [Full Text] [Related]
15. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor. Wang Q, Kou X, Liu C, Zhao L, Lin T, Liu F, Yang X, Lin J, Lu G. J Colloid Interface Sci; 2018 Mar 01; 513():760-766. PubMed ID: 29222975 [Abstract] [Full Text] [Related]
16. Co3O4-SnO2 Hollow Heteronanostructures: Facile Control of Gas Selectivity by Compositional Tuning of Sensing Materials via Galvanic Replacement. Jeong HM, Kim JH, Jeong SY, Kwak CH, Lee JH. ACS Appl Mater Interfaces; 2016 Mar 01; 8(12):7877-83. PubMed ID: 26964735 [Abstract] [Full Text] [Related]
17. Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. Wu W, Zhang S, Zhou J, Xiao X, Ren F, Jiang C. Chemistry; 2011 Aug 22; 17(35):9708-19. PubMed ID: 21735499 [Abstract] [Full Text] [Related]
18. Enhanced resistive acetone sensing by using hollow spherical composites prepared from MoO3 and In2O3. Jiang W, Meng L, Zhang S, Chuai X, Sun P, Liu F, Yan X, Gao Y, Liang X, Lu G. Mikrochim Acta; 2019 May 16; 186(6):359. PubMed ID: 31098848 [Abstract] [Full Text] [Related]
19. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Xue D, Wang Y, Cao J, Sun G, Zhang Z. Talanta; 2019 Jul 01; 199():603-611. PubMed ID: 30952304 [Abstract] [Full Text] [Related]