These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 21136046
1. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Wang Y, Ravindranath S, Irudayaraj J. Anal Bioanal Chem; 2011 Jan; 399(3):1271-8. PubMed ID: 21136046 [Abstract] [Full Text] [Related]
2. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr 05; 230():118103. PubMed ID: 32000058 [Abstract] [Full Text] [Related]
3. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B. Biosens Bioelectron; 2015 Dec 15; 74():872-7. PubMed ID: 26241735 [Abstract] [Full Text] [Related]
4. Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Ma X, Lin X, Xu X, Wang Z. Mikrochim Acta; 2021 May 27; 188(6):202. PubMed ID: 34041580 [Abstract] [Full Text] [Related]
5. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K. Anal Chem; 2017 Dec 05; 89(23):12666-12673. PubMed ID: 28985467 [Abstract] [Full Text] [Related]
6. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags. Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Jiang Y, Liu Y, Yang J. J Colloid Interface Sci; 2023 Mar 15; 634():651-663. PubMed ID: 36549213 [Abstract] [Full Text] [Related]
7. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. Adv Healthc Mater; 2014 Nov 15; 3(11):1889-97. PubMed ID: 24862088 [Abstract] [Full Text] [Related]
8. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Duan N, Chang B, Zhang H, Wang Z, Wu S. Int J Food Microbiol; 2016 Feb 02; 218():38-43. PubMed ID: 26599860 [Abstract] [Full Text] [Related]
9. Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence. Wang Z, Zong S, Chen H, Wu H, Cui Y. Talanta; 2011 Oct 30; 86():170-7. PubMed ID: 22063527 [Abstract] [Full Text] [Related]
10. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M, Haes AJ. J Am Chem Soc; 2008 Oct 29; 130(43):14273-9. PubMed ID: 18831552 [Abstract] [Full Text] [Related]
11. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Lin CC, Yang YM, Liao PH, Chen DW, Lin HP, Chang HC. Biosens Bioelectron; 2014 Mar 15; 53():519-27. PubMed ID: 24220346 [Abstract] [Full Text] [Related]
12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M, Wang Y, Sun X, Wang W, Chen L. ACS Appl Mater Interfaces; 2015 Apr 15; 7(14):7516-25. PubMed ID: 25815901 [Abstract] [Full Text] [Related]
13. A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N. Mikrochim Acta; 2017 Dec 06; 185(1):30. PubMed ID: 29594575 [Abstract] [Full Text] [Related]
14. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG. Biosens Bioelectron; 2013 May 15; 43():432-9. PubMed ID: 23370174 [Abstract] [Full Text] [Related]
15. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Zhang H, Harpster MH, Park HJ, Johnson PA, Wilson WC. Anal Chem; 2011 Jan 01; 83(1):254-60. PubMed ID: 21121693 [Abstract] [Full Text] [Related]
16. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium. Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J, Lu J. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16974-81. PubMed ID: 25188392 [Abstract] [Full Text] [Related]
17. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Chattopadhyay S, Sabharwal PK, Jain S, Kaur A, Singh H. Anal Chim Acta; 2019 Aug 27; 1067():98-106. PubMed ID: 31047154 [Abstract] [Full Text] [Related]
18. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. Wang X, Huang Y, Wu S, Duan N, Xu B, Wang Z. Int J Food Microbiol; 2016 Nov 21; 237():172-179. PubMed ID: 27592261 [Abstract] [Full Text] [Related]
19. Immunomagnetic separation and Listeriamonocytogenes detection with surface-enhanced Raman scattering. Yeğenoğlu Akçinar H, Aslim B, Torul H, Güven B, Zengin A, Suludere Z, Boyaci IH, Tamer U. Turk J Med Sci; 2020 Jun 23; 50(4):1157-1167. PubMed ID: 32283902 [Abstract] [Full Text] [Related]