These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 21142327

  • 1. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK, Baldwin MA, Rullkoetter PJ.
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [Abstract] [Full Text] [Related]

  • 2. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend.
    Baldwin MA, Clary C, Maletsky LP, Rullkoetter PJ.
    J Biomech; 2009 Oct 16; 42(14):2341-8. PubMed ID: 19720376
    [Abstract] [Full Text] [Related]

  • 3. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP, Petrella AJ, Rullkoetter PJ.
    J Biomech; 2005 Feb 16; 38(2):323-31. PubMed ID: 15598460
    [Abstract] [Full Text] [Related]

  • 4. Subject-specific evaluation of patellofemoral joint biomechanics during functional activity.
    Akbarshahi M, Fernandez JW, Schache AG, Pandy MG.
    Med Eng Phys; 2014 Sep 16; 36(9):1122-33. PubMed ID: 24998901
    [Abstract] [Full Text] [Related]

  • 5. Combined probabilistic and principal component analysis approach for multivariate sensitivity evaluation and application to implanted patellofemoral mechanics.
    Fitzpatrick CK, Baldwin MA, Rullkoetter PJ, Laz PJ.
    J Biomech; 2011 Jan 04; 44(1):13-21. PubMed ID: 20825941
    [Abstract] [Full Text] [Related]

  • 6. Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function.
    Fitzpatrick CK, Baldwin MA, Laz PJ, FitzPatrick DP, Lerner AL, Rullkoetter PJ.
    J Biomech; 2011 Sep 02; 44(13):2446-52. PubMed ID: 21803359
    [Abstract] [Full Text] [Related]

  • 7. Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters.
    Womack W, Ayturk UM, Puttlitz CM.
    J Biomech Eng; 2011 Jan 02; 133(1):011009. PubMed ID: 21186899
    [Abstract] [Full Text] [Related]

  • 8. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
    Woldtvedt DJ, Womack W, Gadomski BC, Schuldt D, Puttlitz CM.
    J Biomech Eng; 2011 Jun 02; 133(6):061009. PubMed ID: 21744929
    [Abstract] [Full Text] [Related]

  • 9. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP, Easley SK, Petrella AJ, Rullkoetter PJ.
    J Biomech Eng; 2005 Oct 02; 127(5):813-8. PubMed ID: 16248311
    [Abstract] [Full Text] [Related]

  • 10. Probabilistic finite element prediction of knee wear simulator mechanics.
    Laz PJ, Pal S, Halloran JP, Petrella AJ, Rullkoetter PJ.
    J Biomech; 2006 Oct 02; 39(12):2303-10. PubMed ID: 16185700
    [Abstract] [Full Text] [Related]

  • 11. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator.
    Halloran JP, Clary CW, Maletsky LP, Taylor M, Petrella AJ, Rullkoetter PJ.
    J Biomech Eng; 2010 Aug 02; 132(8):081010. PubMed ID: 20670059
    [Abstract] [Full Text] [Related]

  • 12. Regulation of the patellofemoral contact area: an essential mechanism in patellofemoral joint mechanics?
    Goudakos IG, König C, Schöttle PB, Taylor WR, Hoffmann JE, Pöpplau BM, Singh NB, Duda GN, Heller MO.
    J Biomech; 2010 Dec 01; 43(16):3237-9. PubMed ID: 20708188
    [Abstract] [Full Text] [Related]

  • 13. Dynamic finite element knee simulation for evaluation of knee replacement mechanics.
    Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ.
    J Biomech; 2012 Feb 02; 45(3):474-83. PubMed ID: 22209313
    [Abstract] [Full Text] [Related]

  • 14. Patellofemoral joint contact area increases with knee flexion and weight-bearing.
    Besier TF, Draper CE, Gold GE, Beaupré GS, Delp SL.
    J Orthop Res; 2005 Mar 02; 23(2):345-50. PubMed ID: 15734247
    [Abstract] [Full Text] [Related]

  • 15. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA, Langenderfer JE, Rullkoetter PJ, Laz PJ.
    Comput Methods Programs Biomed; 2010 Mar 02; 97(3):232-40. PubMed ID: 19695732
    [Abstract] [Full Text] [Related]

  • 16. A geometric approach to study the contact mechanisms in the patellofemoral joint of normal versus patellofemoral pain syndrome subjects.
    Islam K, Duke K, Mustafy T, Adeeb SM, Ronsky JL, El-Rich M.
    Comput Methods Biomech Biomed Engin; 2015 Mar 02; 18(4):391-400. PubMed ID: 23952913
    [Abstract] [Full Text] [Related]

  • 17. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling.
    Johnson JE, Lee P, McIff TE, Toby EB, Fischer KJ.
    J Biomech Eng; 2014 Apr 02; 136(4):0410021-9. PubMed ID: 24441649
    [Abstract] [Full Text] [Related]

  • 18. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW, Hunter PJ.
    Biomech Model Mechanobiol; 2005 Aug 02; 4(1):20-38. PubMed ID: 15959816
    [Abstract] [Full Text] [Related]

  • 19. Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
    Adouni M, Shirazi-Adl A, Shirazi R.
    J Biomech; 2012 Aug 09; 45(12):2149-56. PubMed ID: 22721726
    [Abstract] [Full Text] [Related]

  • 20. Weight-bearing MRI of patellofemoral joint cartilage contact area.
    Gold GE, Besier TF, Draper CE, Asakawa DS, Delp SL, Beaupre GS.
    J Magn Reson Imaging; 2004 Sep 09; 20(3):526-30. PubMed ID: 15332263
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.