These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 21145464
1. Functional overlap and regulatory links shape genetic interactions between signaling pathways. van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de Castro IJ, van Leenen D, Groot Koerkamp MJ, Ko CW, Miles AJ, Brabers N, Brok MO, Lenstra TL, Fiedler D, Fokkens L, Aldecoa R, Apweiler E, Taliadouros V, Sameith K, van de Pasch LA, van Hooff SR, Bakker LV, Krogan NJ, Snel B, Holstege FC. Cell; 2010 Dec 10; 143(6):991-1004. PubMed ID: 21145464 [Abstract] [Full Text] [Related]
2. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts. Smoly I, Shemesh N, Ziv-Ukelson M, Ben-Zvi A, Yeger-Lotem E. PLoS Comput Biol; 2017 Jan 10; 13(1):e1005221. PubMed ID: 28135269 [Abstract] [Full Text] [Related]
3. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R. Sci Signal; 2010 Dec 21; 3(153):rs4. PubMed ID: 21177495 [Abstract] [Full Text] [Related]
4. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Musso G, Costanzo M, Huangfu M, Smith AM, Paw J, San Luis BJ, Boone C, Giaever G, Nislow C, Emili A, Zhang Z. Genome Res; 2008 Jul 21; 18(7):1092-9. PubMed ID: 18463300 [Abstract] [Full Text] [Related]
5. Modular epistasis in yeast metabolism. Segrè D, Deluna A, Church GM, Kishony R. Nat Genet; 2005 Jan 21; 37(1):77-83. PubMed ID: 15592468 [Abstract] [Full Text] [Related]
6. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. Sci Signal; 2014 Nov 25; 7(353):rs6. PubMed ID: 25429078 [Abstract] [Full Text] [Related]
7. Modular epistasis and the compensatory evolution of gene deletion mutants. Rojas Echenique JI, Kryazhimskiy S, Nguyen Ba AN, Desai MM. PLoS Genet; 2019 Feb 25; 15(2):e1007958. PubMed ID: 30768593 [Abstract] [Full Text] [Related]
8. The ability of transcription factors to differentially regulate gene expression is a crucial component of the mechanism underlying inversion, a frequently observed genetic interaction pattern. Amini S, Jacobsen A, Ivanova O, Lijnzaad P, Heringa J, Holstege FCP, Feenstra KA, Kemmeren P. PLoS Comput Biol; 2019 May 25; 15(5):e1007061. PubMed ID: 31083661 [Abstract] [Full Text] [Related]
9. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions. Sameith K, Amini S, Groot Koerkamp MJ, van Leenen D, Brok M, Brabers N, Lijnzaad P, van Hooff SR, Benschop JJ, Lenstra TL, Apweiler E, van Wageningen S, Snel B, Holstege FC, Kemmeren P. BMC Biol; 2015 Dec 23; 13():112. PubMed ID: 26700642 [Abstract] [Full Text] [Related]
10. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules. Guo J, Tian D, McKinney BA, Hartman JL. Chaos; 2010 Jun 23; 20(2):026103. PubMed ID: 20590332 [Abstract] [Full Text] [Related]
11. Functional dissection of regulatory models using gene expression data of deletion mutants. Li J, Liu Y, Liu M, Han JD. PLoS Genet; 2013 Jun 23; 9(9):e1003757. PubMed ID: 24039601 [Abstract] [Full Text] [Related]
12. Inferring modulators of genetic interactions with epistatic nested effects models. Pirkl M, Diekmann M, van der Wees M, Beerenwinkel N, Fröhlich H, Markowetz F. PLoS Comput Biol; 2017 Apr 23; 13(4):e1005496. PubMed ID: 28406896 [Abstract] [Full Text] [Related]
13. Systematic inference of indirect transcriptional regulation by protein kinases and phosphatases. Madsen CD, Hein J, Workman CT. PLoS Comput Biol; 2022 Jun 23; 18(6):e1009414. PubMed ID: 35731801 [Abstract] [Full Text] [Related]
14. Epistatic relationships reveal the functional organization of yeast transcription factors. Zheng J, Benschop JJ, Shales M, Kemmeren P, Greenblatt J, Cagney G, Holstege F, Li H, Krogan NJ. Mol Syst Biol; 2010 Oct 05; 6():420. PubMed ID: 20959818 [Abstract] [Full Text] [Related]
15. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TT, van Leenen D, Holstege FC. Mol Cell; 2005 Aug 19; 19(4):511-22. PubMed ID: 16109375 [Abstract] [Full Text] [Related]
16. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF. J Biol Chem; 2000 Nov 17; 275(46):35727-33. PubMed ID: 10940301 [Abstract] [Full Text] [Related]
17. The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose. Defenouillère Q, Verraes A, Laussel C, Friedrich A, Schacherer J, Léon S. Sci Signal; 2019 Sep 03; 12(597):. PubMed ID: 31481524 [Abstract] [Full Text] [Related]
18. Identification of Links Between Cellular Pathways by Genetic Interaction Mapping (GIM). Malabat C, Saveanu C. Methods Mol Biol; 2016 Sep 03; 1361():325-43. PubMed ID: 26483030 [Abstract] [Full Text] [Related]
19. The phosphatase system in Saccharomyces cerevisiae. Oshima Y. Genes Genet Syst; 1997 Dec 03; 72(6):323-34. PubMed ID: 9544531 [Abstract] [Full Text] [Related]
20. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Reiterer V, Eyers PA, Farhan H. Trends Cell Biol; 2014 Sep 03; 24(9):489-505. PubMed ID: 24818526 [Abstract] [Full Text] [Related] Page: [Next] [New Search]