These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


81 related items for PubMed ID: 21146266

  • 1. Influence of growth modulation on the effective permeability of the vertebral end plate. A porcine experimental scoliosis model.
    Accadbled F, Laffosse JM, Odent T, Gomez-Brouchet A, Sales de Gauzy J, Swider P.
    Clin Biomech (Bristol); 2011 May; 26(4):337-42. PubMed ID: 21146266
    [Abstract] [Full Text] [Related]

  • 2. A measurement technique to evaluate the macroscopic permeability of the vertebral end-plate.
    Accadbled F, Ambard D, de Gauzy JS, Swider P.
    Med Eng Phys; 2008 Jan; 30(1):116-22. PubMed ID: 17446114
    [Abstract] [Full Text] [Related]

  • 3. Remodelling of vertebral endplate subchondral bone in scoliosis: a micro-CT analysis in a porcine model.
    Laffosse JM, Accadbled F, Bonnevialle N, Gomez-Brouchet A, de Gauzy JS, Swider P.
    Clin Biomech (Bristol); 2010 Aug; 25(7):636-41. PubMed ID: 20605291
    [Abstract] [Full Text] [Related]

  • 4. Bone mineral density of lumbar vertebral end plates in the aging male sand rat spine.
    Gruber HE, Gordon B, Williams C, James Norton H, Hanley EN.
    Spine (Phila Pa 1976); 2003 Aug 15; 28(16):1766-72. PubMed ID: 12923461
    [Abstract] [Full Text] [Related]

  • 5. Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of vertebral end plates.
    Accadbled F, Laffosse JM, Ambard D, Gomez-Brouchet A, de Gauzy JS, Swider P.
    Spine (Phila Pa 1976); 2008 Mar 15; 33(6):612-9. PubMed ID: 18344854
    [Abstract] [Full Text] [Related]

  • 6. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA, Mente PL, Iatridis JC, Farnum CE, Aronsson DD.
    Stud Health Technol Inform; 2002 Mar 15; 88():378-81. PubMed ID: 15456065
    [Abstract] [Full Text] [Related]

  • 7. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC, Cunningham BW, Hayes V, Sidiqi F, Dabbah M, Sefter JC, Hu N, Beatson H.
    Spine (Phila Pa 1976); 2006 Sep 01; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [Abstract] [Full Text] [Related]

  • 8. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G, Pandit A, Apatsidis D.
    Clin Biomech (Bristol); 2008 Aug 01; 23(7):859-69. PubMed ID: 18423954
    [Abstract] [Full Text] [Related]

  • 9. Analysis of cell death and vertebral end plate bone mineral density in the annulus of the aging sand rat.
    Gruber HE, Gordon B, Norton HJ, Kilburn J, Williams C, Zinchenko N, Heath J, Ingram J, Hanley EN.
    Spine J; 2008 Aug 01; 8(3):475-81. PubMed ID: 18455112
    [Abstract] [Full Text] [Related]

  • 10. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R, Liu X.
    J Biomech Eng; 2013 Aug 01; 135(8):81003. PubMed ID: 23722167
    [Abstract] [Full Text] [Related]

  • 11. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD, Ballester CM, Hammond F, Carine ET, Balderston RA, Elliott DM.
    Spine J; 2010 Apr 01; 10(4):333-40. PubMed ID: 20362251
    [Abstract] [Full Text] [Related]

  • 12. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P, Gupta MC, Sarigul-Klijn N, Hazelwood S.
    Spine J; 2006 Apr 01; 6(6):648-58. PubMed ID: 17088195
    [Abstract] [Full Text] [Related]

  • 13. Measurement and analyses of the effects of adjacent end plate curvatures on vertebral stresses.
    Langrana NA, Kale SP, Edwards WT, Lee CK, Kopacz KJ.
    Spine J; 2006 Apr 01; 6(3):267-78. PubMed ID: 16651220
    [Abstract] [Full Text] [Related]

  • 14. Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model.
    Swider P, Accadbled F, Laffosse JM, Sales de Gauzy J.
    Comput Methods Biomech Biomed Engin; 2012 Apr 01; 15(2):151-6. PubMed ID: 21082460
    [Abstract] [Full Text] [Related]

  • 15. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine.
    Keller TS, Ziv I, Moeljanto E, Spengler DM.
    J Spinal Disord; 1993 Apr 01; 6(2):106-13. PubMed ID: 8504221
    [Abstract] [Full Text] [Related]

  • 16. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates.
    Lalande V, Villemure I, Vonthron M, Parent S, Aubin CÉ.
    Spine Deform; 2020 Feb 01; 8(1):39-44. PubMed ID: 31981151
    [Abstract] [Full Text] [Related]

  • 17. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D, Meng C, Zheng G, Zhang W, Zhang R, Bai L, Zhang Y.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan 01; 23(1):72-5. PubMed ID: 19192884
    [Abstract] [Full Text] [Related]

  • 18. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H, Johnston CE, Pierce WA, Ashman RB, Bronson DG, Haideri NF.
    Spine (Phila Pa 1976); 2006 Dec 01; 31(25):E934-40. PubMed ID: 17139209
    [Abstract] [Full Text] [Related]

  • 19. The role of remodeling and asymmetric growth in vertebral wedging.
    Aronsson DD, Stokes IA, McBride C.
    Stud Health Technol Inform; 2010 Dec 01; 158():11-5. PubMed ID: 20543392
    [Abstract] [Full Text] [Related]

  • 20. Studies of the lumbar vertebral end-plate region in the pig.
    Törner M, Holm S.
    Ups J Med Sci; 1985 Dec 01; 90(3):243-58. PubMed ID: 4095820
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.