These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 21150111
41. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Plant J; 2014 May; 78(3):491-515. PubMed ID: 24580573 [Abstract] [Full Text] [Related]
42. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M. Fungal Genet Biol; 2015 Aug; 81():201-11. PubMed ID: 25512263 [Abstract] [Full Text] [Related]
43. Roles of Arabidopsis bax inhibitor-1 in delaying methyl jasmonate-induced leaf senescence. Yue H, Li Z, Xing D. Plant Signal Behav; 2012 Nov; 7(11):1488-9. PubMed ID: 22960756 [Abstract] [Full Text] [Related]
44. Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber (Cucumis sativa). Jiang Y, Ye J, Rasulov B, Niinemets Ü. Int J Mol Sci; 2020 Feb 04; 21(3):. PubMed ID: 32033119 [Abstract] [Full Text] [Related]
45. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T. Plant Physiol; 2011 Jul 04; 156(3):1364-74. PubMed ID: 21546454 [Abstract] [Full Text] [Related]
46. Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Johansson A, Staal J, Dixelius C. Mol Plant Microbe Interact; 2006 Sep 04; 19(9):958-69. PubMed ID: 16941900 [Abstract] [Full Text] [Related]
47. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. Issak M, Okuma E, Munemasa S, Nakamura Y, Mori IC, Murata Y. Biosci Biotechnol Biochem; 2013 Sep 04; 77(5):1111-3. PubMed ID: 23649239 [Abstract] [Full Text] [Related]
48. Alleviation of drought stress and the physiological mechanisms in Citrus cultivar (Huangguogan) treated with methyl jasmonate. Xiong B, Wang Y, Zhang Y, Ma M, Gao Y, Zhou Z, Wang B, Wang T, Lv X, Wang X, Wang J, Deng H, Wang Z. Biosci Biotechnol Biochem; 2020 Sep 04; 84(9):1958-1965. PubMed ID: 32450767 [Abstract] [Full Text] [Related]
49. Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Tamogami S, Rakwal R, Agrawal GK. Biochem Biophys Res Commun; 2008 Nov 28; 376(4):723-7. PubMed ID: 18812165 [Abstract] [Full Text] [Related]
50. Regulation of water transport in Arabidopsis by methyl jasmonate. Lee SH, Zwiazek JJ. Plant Physiol Biochem; 2019 Jun 28; 139():540-547. PubMed ID: 31029027 [Abstract] [Full Text] [Related]
51. Biological activity and tissue specific accumulation of fluorescently labeled methyl jasmonate. Kitaoka N, Sano Y, Fujikawa S, Nabeta K, Matsuura H. Nat Prod Commun; 2012 Feb 28; 7(2):215-8. PubMed ID: 22474961 [Abstract] [Full Text] [Related]
52. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence. Liu J, Ji Y, Zhou J, Xing D. Plant Physiol; 2016 Mar 28; 170(3):1714-31. PubMed ID: 26739232 [Abstract] [Full Text] [Related]
53. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. Alvarez S, Zhu M, Chen S. J Proteomics; 2009 Nov 02; 73(1):30-40. PubMed ID: 19628057 [Abstract] [Full Text] [Related]
54. Melatonin Antagonizes Jasmonate-Triggered Anthocyanin Biosynthesis in Arabidopsis thaliana. Ai Y, Zhu Z. J Agric Food Chem; 2018 May 30; 66(21):5392-5400. PubMed ID: 29758982 [Abstract] [Full Text] [Related]
55. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM. PLoS One; 2013 May 30; 8(2):e56457. PubMed ID: 23424661 [Abstract] [Full Text] [Related]
56. Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: biphasic kinetics and stomatal regulation. Jiang Y, Ye J, Niinemets Ü. Plant Signal Behav; 2021 Jul 03; 16(7):1917169. PubMed ID: 33879022 [Abstract] [Full Text] [Related]
57. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis. Zimmerli C, Ribot C, Vavasseur A, Bauer H, Hedrich R, Poirier Y. Plant J; 2012 Oct 03; 72(2):199-211. PubMed ID: 22612335 [Abstract] [Full Text] [Related]
58. Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. Tassoni A, Durante L, Ferri M. J Plant Physiol; 2012 May 15; 169(8):775-81. PubMed ID: 22424571 [Abstract] [Full Text] [Related]
59. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Mao P, Duan M, Wei C, Li Y. Plant Cell Physiol; 2007 Jun 15; 48(6):833-42. PubMed ID: 17510065 [Abstract] [Full Text] [Related]
60. Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana. Dueckershoff K, Mueller S, Mueller MJ, Reinders J. Biochim Biophys Acta; 2008 Dec 15; 1784(12):1975-85. PubMed ID: 18848650 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]