These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
551 related items for PubMed ID: 2115440
1. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Bonants PJ, Müller F, Vervoort J, Edmondson DE. Eur J Biochem; 1990 Jul 05; 190(3):531-7. PubMed ID: 2115440 [Abstract] [Full Text] [Related]
2. Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH-cytochrome P-450 reductase using 31P NMR spectroscopy. Otvos JD, Krum DP, Masters BS. Biochemistry; 1986 Nov 04; 25(22):7220-8. PubMed ID: 3099832 [Abstract] [Full Text] [Related]
3. Preparation and properties of a cross-linked complex between ferredoxin--NADP+ reductase and flavodoxin. Pueyo JJ, Sancho J, Edmondson DE, Gómez-Moreno C. Eur J Biochem; 1989 Aug 15; 183(3):539-44. PubMed ID: 2506011 [Abstract] [Full Text] [Related]
4. NADPH-cytochrome P-450 reductase. Physical properties and redox behavior in the absence of the FAD moiety. Kurzban GP, Howarth J, Palmer G, Strobel HW. J Biol Chem; 1990 Jul 25; 265(21):12272-9. PubMed ID: 2115516 [Abstract] [Full Text] [Related]
5. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I, Shaffer C, Ballou DP, Peterson JA. Biochemistry; 1996 Jun 04; 35(22):7058-68. PubMed ID: 8679531 [Abstract] [Full Text] [Related]
6. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. Gruez A, Pignol D, Zeghouf M, Covès J, Fontecave M, Ferrer JL, Fontecilla-Camps JC. J Mol Biol; 2000 May 26; 299(1):199-212. PubMed ID: 10860732 [Abstract] [Full Text] [Related]
8. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. Vermilion JL, Ballou DP, Massey V, Coon MJ. J Biol Chem; 1981 Jan 10; 256(1):266-77. PubMed ID: 6778861 [Abstract] [Full Text] [Related]
9. 31P NMR spectroscopic studies on purified, native and cloned, expressed forms of NADPH-cytochrome P450 reductase. Narayanasami R, Otvos JD, Kasper CB, Shen A, Rajagopalan J, McCabe TJ, Okita JR, Hanahan DJ, Masters BS. Biochemistry; 1992 May 05; 31(17):4210-8. PubMed ID: 1567869 [Abstract] [Full Text] [Related]
10. Flavins of NADPH-cytochrome P-450 reductase: evidence for structural alteration of flavins in their one-electron-reduced semiquinone states from resonance Raman spectroscopy. Sugiyama T, Nisimoto Y, Mason HS, Loehr TM. Biochemistry; 1985 Jun 04; 24(12):3012-9. PubMed ID: 3925989 [Abstract] [Full Text] [Related]
11. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Iyanagi T, Makino R, Anan FK. Biochemistry; 1981 Mar 31; 20(7):1722-30. PubMed ID: 6784758 [Abstract] [Full Text] [Related]
12. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii. Sridhar Prasad G, Kresge N, Muhlberg AB, Shaw A, Jung YS, Burgess BK, Stout CD. Protein Sci; 1998 Dec 31; 7(12):2541-9. PubMed ID: 9865948 [Abstract] [Full Text] [Related]
13. Studies on FAD- and FMN-binding domains in NADPH-cytochrome P-450 reductase from rabbit liver microsomes. Nisimoto Y, Shibata Y. J Biol Chem; 1982 Nov 10; 257(21):12532-9. PubMed ID: 6813323 [Abstract] [Full Text] [Related]
14. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium. Chen HC, Swenson RP. Biochemistry; 2008 Dec 30; 47(52):13788-99. PubMed ID: 19055322 [Abstract] [Full Text] [Related]
15. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Sevrioukova I, Truan G, Peterson JA. Biochemistry; 1996 Jun 11; 35(23):7528-35. PubMed ID: 8652532 [Abstract] [Full Text] [Related]
16. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Meints CE, Gustafsson FS, Scrutton NS, Wolthers KR. Biochemistry; 2011 Dec 27; 50(51):11131-42. PubMed ID: 22097960 [Abstract] [Full Text] [Related]
17. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone. Bradley LH, Swenson RP. Biochemistry; 1999 Sep 21; 38(38):12377-86. PubMed ID: 10493805 [Abstract] [Full Text] [Related]
18. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Wang M, Roberts DL, Paschke R, Shea TM, Masters BS, Kim JJ. Proc Natl Acad Sci U S A; 1997 Aug 05; 94(16):8411-6. PubMed ID: 9237990 [Abstract] [Full Text] [Related]
19. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry. Wolthers KR, Lou X, Toogood HS, Leys D, Scrutton NS. Biochemistry; 2007 Oct 23; 46(42):11833-44. PubMed ID: 17892308 [Abstract] [Full Text] [Related]