These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 21155019

  • 1. A method based on local density and random walks for complexes detection in protein interaction networks.
    Yu L, Gao L, Li K.
    J Bioinform Comput Biol; 2010 Dec; 8 Suppl 1():47-62. PubMed ID: 21155019
    [Abstract] [Full Text] [Related]

  • 2. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L, Gao L, Li K, Zhao Y, Chiu DK.
    Comput Biol Chem; 2011 Oct 12; 35(5):298-307. PubMed ID: 22000801
    [Abstract] [Full Text] [Related]

  • 3. A core-attachment based method to detect protein complexes in PPI networks.
    Wu M, Li X, Kwoh CK, Ng SK.
    BMC Bioinformatics; 2009 Jun 02; 10():169. PubMed ID: 19486541
    [Abstract] [Full Text] [Related]

  • 4. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.
    Peng W, Wang J, Zhao B, Wang L.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Jun 02; 12(1):179-92. PubMed ID: 26357088
    [Abstract] [Full Text] [Related]

  • 5. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X, Liang J.
    Molecules; 2017 Jul 24; 22(7):. PubMed ID: 28737728
    [Abstract] [Full Text] [Related]

  • 6. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 7. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B, Fan W, Liu J, Wu FX.
    Brief Bioinform; 2014 Mar 06; 15(2):177-94. PubMed ID: 23780996
    [Abstract] [Full Text] [Related]

  • 8. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Mar 06; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 9. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L, Gao L, Kong C.
    Proteomics; 2011 Oct 06; 11(19):3826-34. PubMed ID: 21761565
    [Abstract] [Full Text] [Related]

  • 10. Interaction graph mining for protein complexes using local clique merging.
    Li XL, Tan SH, Foo CS, Ng SK.
    Genome Inform; 2005 Oct 06; 16(2):260-9. PubMed ID: 16901108
    [Abstract] [Full Text] [Related]

  • 11. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W, Xu J, Li Y, Zou X.
    J Bioinform Comput Biol; 2019 Feb 06; 17(1):1950001. PubMed ID: 30803297
    [Abstract] [Full Text] [Related]

  • 12. RRW: repeated random walks on genome-scale protein networks for local cluster discovery.
    Macropol K, Can T, Singh AK.
    BMC Bioinformatics; 2009 Sep 09; 10():283. PubMed ID: 19740439
    [Abstract] [Full Text] [Related]

  • 13. Identification of Protein Complexes Based on Core-Attachment Structure and Combination of Centrality Measures and Biological Properties in PPI Weighted Networks.
    Elahi A, Babamir SM.
    Protein J; 2020 Dec 09; 39(6):681-702. PubMed ID: 33040223
    [Abstract] [Full Text] [Related]

  • 14. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 09; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 15. Protein complexes identification based on go attributed network embedding.
    Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z.
    BMC Bioinformatics; 2018 Dec 20; 19(1):535. PubMed ID: 30572820
    [Abstract] [Full Text] [Related]

  • 16. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M, Anand A.
    J Bioinform Comput Biol; 2020 Aug 20; 18(4):2050025. PubMed ID: 32757809
    [Abstract] [Full Text] [Related]

  • 17. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks.
    Xiao Q, Luo P, Li M, Wang J, Wu FX.
    Proteomics; 2019 Mar 20; 19(5):e1800129. PubMed ID: 30650262
    [Abstract] [Full Text] [Related]

  • 18. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.
    Cao B, Luo J, Liang C, Wang S, Ding P.
    IEEE Trans Nanobioscience; 2016 Oct 20; 15(7):728-738. PubMed ID: 27662678
    [Abstract] [Full Text] [Related]

  • 19. Learning the structure of protein-protein interaction networks.
    Kuchaiev O, Przulj N.
    Pac Symp Biocomput; 2009 Oct 20; ():39-50. PubMed ID: 19209694
    [Abstract] [Full Text] [Related]

  • 20. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.
    Wang Y, Qian X.
    BMC Syst Biol; 2017 Mar 14; 11(Suppl 3):22. PubMed ID: 28361714
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.