These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 21158271
1. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation. Zhou B, Yu CX, Chen DZ, Hu XS. Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271 [Abstract] [Full Text] [Related]
2. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy. Su L, Yang Y, Bednarz B, Sterpin E, Du X, Liu T, Ji W, Xu XG. Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378 [Abstract] [Full Text] [Related]
3. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework. Neph R, Ouyang C, Neylon J, Yang Y, Sheng K. Med Phys; 2019 Aug; 46(8):3719-3733. PubMed ID: 31183871 [Abstract] [Full Text] [Related]
4. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Jia X, Gu X, Graves YJ, Folkerts M, Jiang SB. Phys Med Biol; 2011 Nov 21; 56(22):7017-31. PubMed ID: 22016026 [Abstract] [Full Text] [Related]
5. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy. Ibáñez P, Villa-Abaunza A, Vidal M, Guerra P, Graullera S, Illana C, Udías JM. Med Phys; 2021 Dec 21; 48(12):8089-8106. PubMed ID: 34658039 [Abstract] [Full Text] [Related]
6. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine. Zhu J, Chen L, Chen A, Luo G, Deng X, Liu X. Radiat Oncol; 2015 Apr 11; 10():85. PubMed ID: 25885567 [Abstract] [Full Text] [Related]
7. Fast on-site Monte Carlo tool for dose calculations in CT applications. Chen W, Kolditz D, Beister M, Bohle R, Kalender WA. Med Phys; 2012 Jun 11; 39(6):2985-96. PubMed ID: 22755683 [Abstract] [Full Text] [Related]
8. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Schiavi A, Senzacqua M, Pioli S, Mairani A, Magro G, Molinelli S, Ciocca M, Battistoni G, Patera V. Phys Med Biol; 2017 Sep 05; 62(18):7482-7504. PubMed ID: 28873069 [Abstract] [Full Text] [Related]
9. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing. Tian Z, Zhang M, Hrycushko B, Albuquerque K, Jiang SB, Jia X. Brachytherapy; 2016 Sep 05; 15(3):387-398. PubMed ID: 27216118 [Abstract] [Full Text] [Related]
10. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields. Brost EE, Wan Chan Tseung H, Antolak JA. Med Phys; 2023 Jan 05; 50(1):600-618. PubMed ID: 35986907 [Abstract] [Full Text] [Related]
11. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC). Tian Z, Shi F, Folkerts M, Qin N, Jiang SB, Jia X. Phys Med Biol; 2015 Oct 07; 60(19):7419-35. PubMed ID: 26352012 [Abstract] [Full Text] [Related]
12. Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Vanderstraeten B, Reynaert N, Paelinck L, Madani I, De Wagter C, De Gersem W, De Neve W, Thierens H. Med Phys; 2006 Sep 07; 33(9):3149-58. PubMed ID: 17022207 [Abstract] [Full Text] [Related]
13. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy. Adam DP, Liu T, Caracappa PF, Bednarz BP, Xu XG. Med Phys; 2020 Jun 07; 47(6):2537-2549. PubMed ID: 32175615 [Abstract] [Full Text] [Related]
14. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures. Neylon J, Sheng K, Yu V, Chen Q, Low DA, Kupelian P, Santhanam A. Med Phys; 2014 Oct 07; 41(10):101711. PubMed ID: 25281950 [Abstract] [Full Text] [Related]
15. Real-time dose computation: GPU-accelerated source modeling and superposition/convolution. Jacques R, Wong J, Taylor R, McNutt T. Med Phys; 2011 Jan 07; 38(1):294-305. PubMed ID: 21361198 [Abstract] [Full Text] [Related]
16. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system. Ma J, Beltran C, Seum Wan Chan Tseung H, Herman MG. Med Phys; 2014 Dec 07; 41(12):121707. PubMed ID: 25471954 [Abstract] [Full Text] [Related]
17. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model. Wang Y, Mazur TR, Green O, Hu Y, Li H, Rodriguez V, Wooten HO, Yang D, Zhao T, Mutic S, Li HH. Med Phys; 2016 Jul 07; 43(7):4040. PubMed ID: 27370123 [Abstract] [Full Text] [Related]
18. Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields. Li Y, Sun W, Liu H, Ding S, Wang B, Huang X, Song T. Phys Med Biol; 2022 Jun 08; 67(12):. PubMed ID: 35588723 [Abstract] [Full Text] [Related]
19. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy. Fracchiolla F, Engwall E, Janson M, Tamm F, Lorentini S, Fellin F, Bertolini M, Algranati C, Righetto R, Farace P, Amichetti M, Schwarz M. Phys Med; 2021 Aug 08; 88():226-234. PubMed ID: 34311160 [Abstract] [Full Text] [Related]
20. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations. Yepes PP, Mirkovic D, Taddei PJ. Phys Med Biol; 2010 Dec 07; 55(23):7107-20. PubMed ID: 21076192 [Abstract] [Full Text] [Related] Page: [Next] [New Search]