These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


648 related items for PubMed ID: 21165018

  • 1. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
    Suzuki K, Baba T.
    Opt Express; 2010 Dec 06; 18(25):26675-85. PubMed ID: 21165018
    [Abstract] [Full Text] [Related]

  • 2. Fabrication and characterization of chalcogenide glass photonic crystal waveguides.
    Suzuki K, Hamachi Y, Baba T.
    Opt Express; 2009 Dec 07; 17(25):22393-400. PubMed ID: 20052163
    [Abstract] [Full Text] [Related]

  • 3. Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities.
    Lee MW, Grillet C, Monat C, Mägi E, Tomljenovic-Hanic S, Gai X, Madden S, Choi DY, Bulla D, Luther-Davies B, Eggleton BJ.
    Opt Express; 2010 Dec 06; 18(25):26695-703. PubMed ID: 21165020
    [Abstract] [Full Text] [Related]

  • 4. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides.
    Tsay C, Zha Y, Arnold CB.
    Opt Express; 2010 Dec 06; 18(25):26744-53. PubMed ID: 21165024
    [Abstract] [Full Text] [Related]

  • 5. Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber.
    Pelusi MD, Luan F, Choi DY, Madden SJ, Bulla DA, Luther-Davies B, Eggleton BJ.
    Opt Express; 2010 Dec 06; 18(25):26686-94. PubMed ID: 21165019
    [Abstract] [Full Text] [Related]

  • 6. Fabrication of low loss dispersion engineered chalcogenide photonic crystals.
    Spurny M, O'Faolain L, Bulla DA, Luther-Davies B, Krauss TF.
    Opt Express; 2011 Jan 31; 19(3):1991-6. PubMed ID: 21369015
    [Abstract] [Full Text] [Related]

  • 7. A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration.
    Ebnali-Heidari M, Monat C, Grillet C, Moravvej-Farshi MK.
    Opt Express; 2009 Sep 28; 17(20):18340-53. PubMed ID: 19907625
    [Abstract] [Full Text] [Related]

  • 8. Wideband slow light in chirped slot photonic-crystal coupled waveguides.
    Hou J, Wu H, Citrin DS, Mo W, Gao D, Zhou Z.
    Opt Express; 2010 May 10; 18(10):10567-80. PubMed ID: 20588909
    [Abstract] [Full Text] [Related]

  • 9. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges.
    Carlie N, Musgraves JD, Zdyrko B, Luzinov I, Hu J, Singh V, Agarwal A, Kimerling LC, Canciamilla A, Morichetti F, Melloni A, Richardson K.
    Opt Express; 2010 Dec 06; 18(25):26728-43. PubMed ID: 21165023
    [Abstract] [Full Text] [Related]

  • 10. Modeling of the dynamic transmission properties of chalcogenide ring resonators in the presence of fast and slow nonlinearities.
    Ogusu K, Oda Y.
    Opt Express; 2011 Jan 17; 19(2):649-59. PubMed ID: 21263604
    [Abstract] [Full Text] [Related]

  • 11. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As(2)S(3) chalcogenide photonic crystal fibers.
    Weiblen RJ, Docherty A, Hu J, Menyuk CR.
    Opt Express; 2010 Dec 06; 18(25):26666-74. PubMed ID: 21165017
    [Abstract] [Full Text] [Related]

  • 12. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces.
    Sanghera J, Florea C, Busse L, Shaw B, Miklos F, Aggarwal I.
    Opt Express; 2010 Dec 06; 18(25):26760-8. PubMed ID: 21165026
    [Abstract] [Full Text] [Related]

  • 13. High-Q Si microresonators formed by substrate transfer on silica waveguide wafers.
    Ng W, Rockwood T, Persechini D, Chang D.
    Opt Express; 2010 Dec 20; 18(26):27004-15. PubMed ID: 21196977
    [Abstract] [Full Text] [Related]

  • 14. Chalcogenide glass microsphere laser.
    Elliott GR, Murugan GS, Wilkinson JS, Zervas MN, Hewak DW.
    Opt Express; 2010 Dec 06; 18(25):26720-7. PubMed ID: 21165022
    [Abstract] [Full Text] [Related]

  • 15. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.
    Hu J, Feng NN, Carlie N, Petit L, Agarwal A, Richardson K, Kimerling L.
    Opt Express; 2010 Jan 18; 18(2):1469-78. PubMed ID: 20173975
    [Abstract] [Full Text] [Related]

  • 16. Progress in optical waveguides fabricated from chalcogenide glasses.
    Gai X, Han T, Prasad A, Madden S, Choi DY, Wang R, Bulla D, Luther-Davies B.
    Opt Express; 2010 Dec 06; 18(25):26635-46. PubMed ID: 21165014
    [Abstract] [Full Text] [Related]

  • 17. Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides.
    Akosman AE, Mutlu M, Kurt H, Ozbay E.
    Opt Express; 2011 Nov 21; 19(24):24129-38. PubMed ID: 22109439
    [Abstract] [Full Text] [Related]

  • 18. Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring.
    Jewart CM, Quintero SM, Braga AM, Chen KP.
    Opt Express; 2010 Dec 06; 18(25):25657-64. PubMed ID: 21164912
    [Abstract] [Full Text] [Related]

  • 19. A waveguide reflector based on hybrid one-dimensional photonic crystal waveguides with a semi-cylinder defect.
    Chen B, Huang L, Liu C, Tang T, Li Y.
    Opt Express; 2010 Dec 06; 18(25):25567-72. PubMed ID: 21164902
    [Abstract] [Full Text] [Related]

  • 20. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH, Huang YT, Yang YL, Lu MF, Shieh JM.
    Appl Opt; 2012 Aug 20; 51(24):5876-84. PubMed ID: 22907016
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.