These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 2116894

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Liberation of 14CO2 from 14C-fatty acids by riboflavin-deficient sucking rat pups: a study of 14C-Octanoate and 14C-palmitate oxidation in vivo.
    Patterson BE, Bates CJ.
    Int J Vitam Nutr Res; 1989; 59(3):293-9. PubMed ID: 2513284
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. An accurate and sensitive assay of [14C]octanoate oxidation and its application on tissue homogenates and fibroblasts.
    Veerkamp JH, van Moerkerk HT, Bakkeren JA.
    Biochim Biophys Acta; 1986 Mar 21; 876(1):133-7. PubMed ID: 3081042
    [Abstract] [Full Text] [Related]

  • 6. Hepatic mitochondrial and peroxisomal oxidative capacity in riboflavin deficiency: effect of age, dietary fat and starvation in rats.
    Brady PS, Knoeber CM, Brady LJ.
    J Nutr; 1986 Oct 21; 116(10):1992-9. PubMed ID: 3772526
    [Abstract] [Full Text] [Related]

  • 7. Hepatic peroxisomal and mitochondrial fatty acid oxidation in the riboflavin-deficient rat.
    Brady PS, Hoppel CL.
    Biochem J; 1985 Aug 01; 229(3):717-21. PubMed ID: 4052019
    [Abstract] [Full Text] [Related]

  • 8. Emulsification and fatty acid chain length affect the kinetics of [14C]-medium-chain triacylglycerol utilization by neonatal piglets.
    Odle J, Lin X, Wieland TM, van Kempen TA.
    J Nutr; 1994 Jan 01; 124(1):84-93. PubMed ID: 8283298
    [Abstract] [Full Text] [Related]

  • 9. C6--C10-dicarboxylic aciduria in starved, fat-fed and diabetic rats receiving decanoic acid or medium-chain triacylglycerol. An in vivo measure of the rate of beta-oxidation of fatty acids.
    Mortensen PB.
    Biochim Biophys Acta; 1981 May 22; 664(2):349-55. PubMed ID: 7248330
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB, Gregersen N.
    Biochim Biophys Acta; 1981 Dec 23; 666(3):394-404. PubMed ID: 6798996
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation.
    Saudubray JM, Coudé FX, Demaugre F, Johnson C, Gibson KM, Nyhan WL.
    Pediatr Res; 1982 Oct 23; 16(10):877-81. PubMed ID: 7145511
    [Abstract] [Full Text] [Related]

  • 18. Lipid metabolism in riboflavin-deficient rats. 1. Effect of dietary lipids on riboflavin status and fatty acid profiles.
    Olpin SE, Bates CJ.
    Br J Nutr; 1982 May 23; 47(3):577-96. PubMed ID: 7082626
    [Abstract] [Full Text] [Related]

  • 19. The effect of riboflavin deficiency in rats on the absorption and distribution of iron.
    Powers HJ, Wright AJ, Fairweather-Tait SJ.
    Br J Nutr; 1988 May 23; 59(3):381-7. PubMed ID: 3395601
    [Abstract] [Full Text] [Related]

  • 20. Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: in vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles.
    van Kempen TA, Odle J.
    J Nutr; 1995 Feb 23; 125(2):238-50. PubMed ID: 7861251
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.