These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 21169491
1. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. Leibig M, Liebeke M, Mader D, Lalk M, Peschel A, Götz F. J Bacteriol; 2011 Feb; 193(4):952-62. PubMed ID: 21169491 [Abstract] [Full Text] [Related]
2. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11. Doi Y, Ikegami Y. J Bacteriol; 2014 Jul; 196(13):2472-80. PubMed ID: 24769696 [Abstract] [Full Text] [Related]
3. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Berríos-Rivera SJ, Bennett GN, San KY. Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691 [Abstract] [Full Text] [Related]
4. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate. Abaibou H, Giordano G, Mandrand-Berthelot MA. Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2657-2664. PubMed ID: 9274019 [Abstract] [Full Text] [Related]
5. Pyruvate formate lyase is required for pneumococcal fermentative metabolism and virulence. Yesilkaya H, Spissu F, Carvalho SM, Terra VS, Homer KA, Benisty R, Porat N, Neves AR, Andrew PW. Infect Immun; 2009 Dec; 77(12):5418-27. PubMed ID: 19752030 [Abstract] [Full Text] [Related]
6. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Berríos-Rivera SJ, Bennett GN, San KY. Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692 [Abstract] [Full Text] [Related]
7. Expression of the pfl gene and resulting metabolite flux distribution in nuo and ackA-pta E. coli mutant strains. Singh R, Yang YT, Lu B, Bennett GN, San KY. Biotechnol Prog; 2006 Jul; 22(3):898-902. PubMed ID: 16739977 [Abstract] [Full Text] [Related]
8. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. Knappe J, Sawers G. FEMS Microbiol Rev; 1990 Aug; 6(4):383-98. PubMed ID: 2248795 [Abstract] [Full Text] [Related]
9. Elimination of formate production in Clostridium thermocellum. Rydzak T, Lynd LR, Guss AM. J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629 [Abstract] [Full Text] [Related]
10. Pyruvate Formate-Lyase Enables Efficient Growth of Escherichia coli on Acetate and Formate. Zelcbuch L, Lindner SN, Zegman Y, Vainberg Slutskin I, Antonovsky N, Gleizer S, Milo R, Bar-Even A. Biochemistry; 2016 May 03; 55(17):2423-6. PubMed ID: 27093333 [Abstract] [Full Text] [Related]
11. Identification of a Formate-Dependent Uric Acid Degradation Pathway in Escherichia coli. Iwadate Y, Kato JI. J Bacteriol; 2019 Jun 01; 201(11):. PubMed ID: 30885932 [Abstract] [Full Text] [Related]
12. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. J Bacteriol; 2004 Nov 01; 186(22):7593-600. PubMed ID: 15516572 [Abstract] [Full Text] [Related]
13. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA. J Bacteriol; 2016 Apr 01; 198(8):1337-46. PubMed ID: 26883823 [Abstract] [Full Text] [Related]
14. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Balzer GJ, Thakker C, Bennett GN, San KY. Metab Eng; 2013 Nov 01; 20():1-8. PubMed ID: 23876411 [Abstract] [Full Text] [Related]
15. Carbon Source-Dependent Reprogramming of Anaerobic Metabolism in Staphylococcus aureus. Troitzsch A, Loi VV, Methling K, Zühlke D, Lalk M, Riedel K, Bernhardt J, Elsayed EM, Bange G, Antelmann H, Pané-Farré J. J Bacteriol; 2021 Mar 23; 203(8):. PubMed ID: 33526614 [Abstract] [Full Text] [Related]
16. Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein. Derzelle S, Bolotin A, Mistou MY, Rul F. Appl Environ Microbiol; 2005 Dec 23; 71(12):8597-605. PubMed ID: 16332852 [Abstract] [Full Text] [Related]
17. Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium, Streptococcus bovis. Asanuma N, Iwamoto M, Hino T. Microbiology (Reading); 1999 Jan 23; 145 ( Pt 1)():151-157. PubMed ID: 10206694 [Abstract] [Full Text] [Related]
18. Molecular characterization and expression of pyruvate formate-lyase-activating enzyme in a ruminal bacterium, Streptococcus bovis. Asanuma N, Hino T. Appl Environ Microbiol; 2002 Jul 23; 68(7):3352-7. PubMed ID: 12089014 [Abstract] [Full Text] [Related]
19. Isolation and characterization of hypophosphite--resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Suppmann B, Sawers G. Mol Microbiol; 1994 Mar 23; 11(5):965-82. PubMed ID: 8022272 [Abstract] [Full Text] [Related]
20. Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach. Kohler C, von Eiff C, Peters G, Proctor RA, Hecker M, Engelmann S. J Bacteriol; 2003 Dec 23; 185(23):6928-37. PubMed ID: 14617657 [Abstract] [Full Text] [Related] Page: [Next] [New Search]