These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


389 related items for PubMed ID: 21173116

  • 1. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories.
    Ge XQ, Blow JJ.
    J Cell Biol; 2010 Dec 27; 191(7):1285-97. PubMed ID: 21173116
    [Abstract] [Full Text] [Related]

  • 2. Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus.
    Luciani MG, Oehlmann M, Blow JJ.
    J Cell Sci; 2004 Dec 01; 117(Pt 25):6019-30. PubMed ID: 15536124
    [Abstract] [Full Text] [Related]

  • 3. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage.
    Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J.
    Mol Cell Biol; 2005 May 01; 25(9):3553-62. PubMed ID: 15831461
    [Abstract] [Full Text] [Related]

  • 4. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing.
    Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM, Smythe C.
    J Cell Biol; 2001 Sep 03; 154(5):913-23. PubMed ID: 11535615
    [Abstract] [Full Text] [Related]

  • 5. Damage-induced phosphorylation of Sld3 is important to block late origin firing.
    Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP.
    Nature; 2010 Sep 23; 467(7314):479-83. PubMed ID: 20865002
    [Abstract] [Full Text] [Related]

  • 6. Dormant origin signaling during unperturbed replication.
    Moiseeva TN, Bakkenist CJ.
    DNA Repair (Amst); 2019 Sep 23; 81():102655. PubMed ID: 31311769
    [Abstract] [Full Text] [Related]

  • 7. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest.
    Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes Idel B, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N.
    Cell Cycle; 2012 Oct 01; 11(19):3627-37. PubMed ID: 22935704
    [Abstract] [Full Text] [Related]

  • 8. Chk1- and claspin-dependent but ATR/ATM- and Rad17-independent DNA replication checkpoint response in HeLa cells.
    Rodríguez-Bravo V, Guaita-Esteruelas S, Florensa R, Bachs O, Agell N.
    Cancer Res; 2006 Sep 01; 66(17):8672-9. PubMed ID: 16951182
    [Abstract] [Full Text] [Related]

  • 9. Chk1 promotes replication fork progression by controlling replication initiation.
    Petermann E, Woodcock M, Helleday T.
    Proc Natl Acad Sci U S A; 2010 Sep 14; 107(37):16090-5. PubMed ID: 20805465
    [Abstract] [Full Text] [Related]

  • 10. The dispersal of replication proteins after Etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia Rad3-related/Chk1 pathway.
    Rossi R, Lidonnici MR, Soza S, Biamonti G, Montecucco A.
    Cancer Res; 2006 Feb 01; 66(3):1675-83. PubMed ID: 16452227
    [Abstract] [Full Text] [Related]

  • 11. Chk1 regulates the density of active replication origins during the vertebrate S phase.
    Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA.
    EMBO J; 2007 Jun 06; 26(11):2719-31. PubMed ID: 17491592
    [Abstract] [Full Text] [Related]

  • 12. Dormant origins, the licensing checkpoint, and the response to replicative stresses.
    McIntosh D, Blow JJ.
    Cold Spring Harb Perspect Biol; 2012 Oct 01; 4(10):. PubMed ID: 22904560
    [Abstract] [Full Text] [Related]

  • 13. Chk1 and Claspin potentiate PCNA ubiquitination.
    Yang XH, Shiotani B, Classon M, Zou L.
    Genes Dev; 2008 May 01; 22(9):1147-52. PubMed ID: 18451105
    [Abstract] [Full Text] [Related]

  • 14. Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents.
    Liu JS, Kuo SR, Melendy T.
    Mutat Res; 2003 Nov 27; 532(1-2):215-26. PubMed ID: 14643438
    [Abstract] [Full Text] [Related]

  • 15. Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1.
    Krause DR, Jonnalagadda JC, Gatei MH, Sillje HH, Zhou BB, Nigg EA, Khanna K.
    Oncogene; 2003 Sep 04; 22(38):5927-37. PubMed ID: 12955071
    [Abstract] [Full Text] [Related]

  • 16. Cyclin E is stabilized in response to replication fork barriers leading to prolonged S phase arrest.
    Lu X, Liu J, Legerski RJ.
    J Biol Chem; 2009 Dec 18; 284(51):35325-37. PubMed ID: 19812034
    [Abstract] [Full Text] [Related]

  • 17. ATR and ATM regulate the timing of DNA replication origin firing.
    Shechter D, Costanzo V, Gautier J.
    Nat Cell Biol; 2004 Jul 18; 6(7):648-55. PubMed ID: 15220931
    [Abstract] [Full Text] [Related]

  • 18. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.
    Zegerman P, Diffley JF.
    Nature; 2010 Sep 23; 467(7314):474-8. PubMed ID: 20835227
    [Abstract] [Full Text] [Related]

  • 19. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint.
    Petersen P, Chou DM, You Z, Hunter T, Walter JC, Walter G.
    Mol Cell Biol; 2006 Mar 23; 26(5):1997-2011. PubMed ID: 16479016
    [Abstract] [Full Text] [Related]

  • 20. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint.
    Marheineke K, Hyrien O.
    J Biol Chem; 2004 Jul 02; 279(27):28071-81. PubMed ID: 15123715
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.