These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 21174476
1. Simulation of the amide I absorption of stacked β-sheets. Karjalainen EL, Ravi HK, Barth A. J Phys Chem B; 2011 Feb 03; 115(4):749-57. PubMed ID: 21174476 [Abstract] [Full Text] [Related]
2. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. Welch WR, Kubelka J, Keiderling TA. J Phys Chem B; 2013 Sep 12; 117(36):10343-58. PubMed ID: 23924300 [Abstract] [Full Text] [Related]
3. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ, Schweitzer-Stenner R. J Am Chem Soc; 2011 Feb 02; 133(4):1066-76. PubMed ID: 21186804 [Abstract] [Full Text] [Related]
4. Structural analyses of experimental 13C edited amide I' IR and VCD for peptide β-sheet aggregates and fibrils using DFT-based spectral simulations. Welch WR, Keiderling TA, Kubelka J. J Phys Chem B; 2013 Sep 12; 117(36):10359-69. PubMed ID: 23924239 [Abstract] [Full Text] [Related]
5. Amide I two-dimensional infrared spectroscopy of proteins. Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A. Acc Chem Res; 2008 Mar 12; 41(3):432-41. PubMed ID: 18288813 [Abstract] [Full Text] [Related]
6. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets. Schweitzer-Stenner R. J Phys Chem B; 2012 Apr 12; 116(14):4141-53. PubMed ID: 22390232 [Abstract] [Full Text] [Related]
7. Pressure-induced transformation of alpha-helix to beta-sheet in the secondary structures of amyloid beta (1-40) peptide exacerbated by temperature. Lin SY, Chu HL, Wei YS. J Biomol Struct Dyn; 2002 Feb 12; 19(4):619-25. PubMed ID: 11843623 [Abstract] [Full Text] [Related]
8. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure. Demirdöven N, Cheatum CM, Chung HS, Khalil M, Knoester J, Tokmakoff A. J Am Chem Soc; 2004 Jun 30; 126(25):7981-90. PubMed ID: 15212548 [Abstract] [Full Text] [Related]
9. Amide I infrared spectral features characteristic of some untypical conformations appearing in the structures suggested for amyloids. Torii H. J Phys Chem B; 2008 Jul 24; 112(29):8737-43. PubMed ID: 18582018 [Abstract] [Full Text] [Related]
10. A quantitative reconstruction of the amide I contour in the IR spectra of globular proteins: from structure to spectrum. Brauner JW, Flach CR, Mendelsohn R. J Am Chem Soc; 2005 Jan 12; 127(1):100-9. PubMed ID: 15631459 [Abstract] [Full Text] [Related]
11. Ab initio modeling of amide I coupling in antiparallel beta-sheets and the effect of 13C isotopic labeling on infrared spectra. Bour P, Keiderling TA. J Phys Chem B; 2005 Mar 24; 109(11):5348-57. PubMed ID: 16863201 [Abstract] [Full Text] [Related]
12. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. Panick G, Malessa R, Winter R, Rapp G, Frye KJ, Royer CA. J Mol Biol; 1998 Jan 16; 275(2):389-402. PubMed ID: 9466917 [Abstract] [Full Text] [Related]
13. Water penetration into protein secondary structure revealed by hydrogen-deuterium exchange two-dimensional infrared spectroscopy. DeFlores LP, Tokmakoff A. J Am Chem Soc; 2006 Dec 27; 128(51):16520-1. PubMed ID: 17177399 [Abstract] [Full Text] [Related]
14. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H, Schultz C, Naumann D, Landt O, Hahn U, Saenger W. J Mol Biol; 1993 Aug 05; 232(3):967-81. PubMed ID: 8355280 [Abstract] [Full Text] [Related]
15. Infrared study of the effect of hydration on the amide I band and aggregation properties of helical peptides. Mukherjee S, Chowdhury P, Gai F. J Phys Chem B; 2007 May 03; 111(17):4596-602. PubMed ID: 17419612 [Abstract] [Full Text] [Related]
16. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Inouye H, Gleason KA, Zhang D, Decatur SM, Kirschner DA. Proteins; 2010 Aug 01; 78(10):2306-21. PubMed ID: 20544966 [Abstract] [Full Text] [Related]
17. Secondary conformations and temperature effect on structural transformation of amyloid beta (1-28), (1-40) and (1-42) peptides. Lin SY, Chu HL, Wei YS. J Biomol Struct Dyn; 2003 Feb 01; 20(4):595-601. PubMed ID: 12529158 [Abstract] [Full Text] [Related]
18. Determining beta-sheet stability by Fourier transform infrared difference spectra. Wang T, Xu Y, Du D, Gai F. Biopolymers; 2004 Oct 05; 75(2):163-72. PubMed ID: 15356870 [Abstract] [Full Text] [Related]
19. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodríguez-Llansola F. J Phys Chem B; 2010 Jan 21; 114(2):940-51. PubMed ID: 20039666 [Abstract] [Full Text] [Related]
20. Characteristic two-dimensional IR spectroscopic features of antiparallel and parallel beta-sheet polypeptides: simulation studies. Hahn S, Kim SS, Lee C, Cho M. J Chem Phys; 2005 Aug 22; 123(8):084905. PubMed ID: 16164328 [Abstract] [Full Text] [Related] Page: [Next] [New Search]