These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 21175199

  • 1. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I).
    Lee JW, Thomas LC, Schmidt SJ.
    J Agric Food Chem; 2011 Jan 26; 59(2):684-701. PubMed ID: 21175199
    [Abstract] [Full Text] [Related]

  • 2. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)?
    Lee JW, Thomas LC, Schmidt SJ.
    J Agric Food Chem; 2011 Apr 13; 59(7):3306-10. PubMed ID: 21417276
    [Abstract] [Full Text] [Related]

  • 3. Investigation of thermal decomposition as the kinetic process that causes the loss of crystalline structure in sucrose using a chemical analysis approach (part II).
    Lee JW, Thomas LC, Jerrell J, Feng H, Cadwallader KR, Schmidt SJ.
    J Agric Food Chem; 2011 Jan 26; 59(2):702-12. PubMed ID: 21175200
    [Abstract] [Full Text] [Related]

  • 4. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A, Pyda M.
    Carbohydr Res; 2011 Nov 29; 346(16):2558-66. PubMed ID: 22000766
    [Abstract] [Full Text] [Related]

  • 5. Melting behaviour of D-sucrose, D-glucose and D-fructose.
    Hurtta M, Pitkänen I, Knuutinen J.
    Carbohydr Res; 2004 Sep 13; 339(13):2267-73. PubMed ID: 15337455
    [Abstract] [Full Text] [Related]

  • 6. Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching.
    Lee JW, Thomas LC, Schmidt SJ.
    J Agric Food Chem; 2011 Apr 13; 59(7):3311-9. PubMed ID: 21381719
    [Abstract] [Full Text] [Related]

  • 7. Co-melting behaviour of sucrose, glucose & fructose.
    Wang Y, Truong T, Li H, Bhandari B.
    Food Chem; 2019 Mar 01; 275():292-298. PubMed ID: 30724199
    [Abstract] [Full Text] [Related]

  • 8. Kinetics and thermodynamics of sucrose hydrolysis from real-time enthalpy and heat capacity measurements.
    Tombari E, Salvetti G, Ferrari C, Johari GP.
    J Phys Chem B; 2007 Jan 25; 111(3):496-501. PubMed ID: 17228904
    [Abstract] [Full Text] [Related]

  • 9. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass.
    Bower S, Wickramasinghe R, Nagle NJ, Schell DJ.
    Bioresour Technol; 2008 Oct 25; 99(15):7354-62. PubMed ID: 17616458
    [Abstract] [Full Text] [Related]

  • 10. Comment on the melting and decomposition of sugars.
    Roos YH, Franks F, Karel M, Labuza TP, Levine H, Mathlouthi M, Reid D, Shalaev E, Slade L.
    J Agric Food Chem; 2012 Oct 17; 60(41):10359-62; author reply 10363-71. PubMed ID: 23016831
    [No Abstract] [Full Text] [Related]

  • 11. Investigations on the thermal behavior of omeprazole and other sulfoxides.
    Rosenblatt KM, Bunjes H, Seeling A, Oelschläger H.
    Pharmazie; 2005 Jul 17; 60(7):503-7. PubMed ID: 16076075
    [Abstract] [Full Text] [Related]

  • 12. Experimental data and predictive equation of the specific heat capacity of fruit juice model systems measured with differential scanning calorimetry.
    Sánchez-Romero MA, García-Coronado P, Rivera-Bautista C, González-García R, Grajales-Lagunes A, Abud-Archila M, Ruiz-Cabrera MA.
    J Food Sci; 2021 May 17; 86(5):1946-1962. PubMed ID: 33844286
    [Abstract] [Full Text] [Related]

  • 13. The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation.
    Qi S, Craig DQ.
    Mol Pharm; 2012 May 07; 9(5):1087-99. PubMed ID: 22449179
    [Abstract] [Full Text] [Related]

  • 14. Relative hydrophobicity/hydrophilicity of fructose, glucose, sucrose, and trehalose as probed by 1-propanol: a differential approach in solution thermodynamics.
    Koga Y, Nishikawa K, Westh P.
    J Phys Chem B; 2007 Dec 20; 111(50):13943-8. PubMed ID: 18031029
    [Abstract] [Full Text] [Related]

  • 15. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins.
    Nobre C, Santos MJ, Dominguez A, Torres D, Rocha O, Peres AM, Rocha I, Ferreira EC, Teixeira JA, Rodrigues LR.
    Anal Chim Acta; 2009 Nov 03; 654(1):71-6. PubMed ID: 19850171
    [Abstract] [Full Text] [Related]

  • 16. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT).
    Zhang JQ, Gao HX, Su LH, Hu RZ, Zhao FQ, Wang BZ.
    J Hazard Mater; 2009 Aug 15; 167(1-3):205-8. PubMed ID: 19185997
    [Abstract] [Full Text] [Related]

  • 17. Simultaneous determination of structural and thermodynamic effects of carbohydrate solutes on the thermal stability of ribonuclease A.
    O'Connor TF, Debenedetti PG, Carbeck JD.
    J Am Chem Soc; 2004 Sep 29; 126(38):11794-5. PubMed ID: 15382905
    [Abstract] [Full Text] [Related]

  • 18. DSC study of sucrose melting.
    Beckett ST, Francesconi MG, Geary PM, Mackenzie G, Maulny AP.
    Carbohydr Res; 2006 Nov 06; 341(15):2591-9. PubMed ID: 16916498
    [Abstract] [Full Text] [Related]

  • 19. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS.
    Perez Locas C, Yaylayan VA.
    J Agric Food Chem; 2008 Aug 13; 56(15):6717-23. PubMed ID: 18611024
    [Abstract] [Full Text] [Related]

  • 20. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.
    Chi JH, Wu SH, Shu CM.
    J Hazard Mater; 2009 Nov 15; 171(1-3):1145-9. PubMed ID: 19619941
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.