These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 21178163
21. Role of Fur on cyanide tolerance of Pseudomonas pseudoalcaligenes CECT5344. Becerra G, Blasco R, Quesada A, Merchán F, Igeño MI. Biochem Soc Trans; 2011 Dec; 39(6):1854-8. PubMed ID: 22103539 [Abstract] [Full Text] [Related]
22. Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344. Becerra G, Merchán F, Blasco R, Igeño MI. J Biotechnol; 2014 Nov 20; 190():2-10. PubMed ID: 24704534 [Abstract] [Full Text] [Related]
23. Quantitative Proteomic Analysis of Cyanide and Mercury Detoxification by Pseudomonas pseudoalcaligenes CECT 5344. Biełło KA, Olaya-Abril A, Cabello P, Rodríguez-Caballero G, Sáez LP, Moreno-Vivián C, Luque-Almagro VM, Roldán MD. Microbiol Spectr; 2023 Aug 17; 11(4):e0055323. PubMed ID: 37432117 [Abstract] [Full Text] [Related]
24. Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344. Wibberg D, Luque-Almagro VM, Igeño MI, Bremges A, Roldán MD, Merchán F, Sáez LP, Guijo MI, Manso MI, Macías D, Cabello P, Becerra G, Ibáñez MI, Carmona MI, Escribano MM, Castillo F, Sczyrba A, Moreno-Vivián C, Blasco R, Pühler A, Schlüter A. J Biotechnol; 2014 Apr 10; 175():67-8. PubMed ID: 24553071 [Abstract] [Full Text] [Related]
25. The nit1C gene cluster of Pseudomonas pseudoalcaligenes CECT5344 involved in assimilation of nitriles is essential for growth on cyanide. Estepa J, Luque-Almagro VM, Manso I, Escribano MP, Martínez-Luque M, Castillo F, Moreno-Vivián C, Roldán MD. Environ Microbiol Rep; 2012 Jun 10; 4(3):326-34. PubMed ID: 23760796 [Abstract] [Full Text] [Related]
26. Biodegradation of cyanide wastes from mining and jewellery industries. Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Curr Opin Biotechnol; 2016 Apr 10; 38():9-13. PubMed ID: 26745356 [Abstract] [Full Text] [Related]
27. Genomic Insights into Cyanide Biodegradation in the Pseudomonas Genus. Sáez LP, Rodríguez-Caballero G, Olaya-Abril A, Cabello P, Moreno-Vivián C, Roldán MD, Luque-Almagro VM. Int J Mol Sci; 2024 Apr 18; 25(8):. PubMed ID: 38674043 [Abstract] [Full Text] [Related]
28. d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium Pseudomonas stutzeri. Guo X, Zhang M, Cao M, Zhang W, Kang Z, Xu P, Ma C, Gao C. J Biol Chem; 2018 Oct 05; 293(40):15513-15523. PubMed ID: 30131334 [Abstract] [Full Text] [Related]
29. Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis During Cyanide Assimilation by the Alkaliphilic Bacterium Pseudomonas pseudoalcaligenes CECT5344. Olaya-Abril A, Pérez MD, Cabello P, Martignetti D, Sáez LP, Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Front Microbiol; 2020 Oct 05; 11():28. PubMed ID: 32038602 [Abstract] [Full Text] [Related]
30. Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by Pseudomonas pseudoalcaligenes CECT 5344. Biełło KA, Cabello P, Rodríguez-Caballero G, Sáez LP, Luque-Almagro VM, Roldán MD, Olaya-Abril A, Moreno-Vivián C. Int J Mol Sci; 2023 Apr 13; 24(8):. PubMed ID: 37108394 [Abstract] [Full Text] [Related]
32. Cyanotrophic and arsenic oxidizing activities of Pseudomonas mendocina P6115 isolated from mine tailings containing high cyanide concentration. Miranda-Carrazco A, Vigueras-Cortés JM, Villa-Tanaca L, Hernández-Rodríguez C. Arch Microbiol; 2018 Sep 13; 200(7):1037-1048. PubMed ID: 29644379 [Abstract] [Full Text] [Related]
33. Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. Pastore D, Trono D, Laus MN, Di Fonzo N, Passarella S. Plant Cell Physiol; 2001 Dec 13; 42(12):1373-82. PubMed ID: 11773530 [Abstract] [Full Text] [Related]
34. Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707. Murphy CD, Quirke S, Balogun O. FEMS Microbiol Lett; 2008 Sep 13; 286(1):45-9. PubMed ID: 18616594 [Abstract] [Full Text] [Related]
35. Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates. Selinski J, Hartmann A, Deckers-Hebestreit G, Day DA, Whelan J, Scheibe R. Plant Physiol; 2018 Feb 13; 176(2):1423-1432. PubMed ID: 29208641 [Abstract] [Full Text] [Related]
36. A Case of Adaptive Laboratory Evolution (ALE): Biodegradation of Furfural by Pseudomonas pseudoalcaligenes CECT 5344. Igeño MI, Macias D, Blasco R. Genes (Basel); 2019 Jun 29; 10(7):. PubMed ID: 31261932 [Abstract] [Full Text] [Related]
37. Deciphering functional redundancy and energetics of malate oxidation in mycobacteria. Harold LK, Jinich A, Hards K, Cordeiro A, Keighley LM, Cross A, McNeil MB, Rhee K, Cook GM. J Biol Chem; 2022 May 29; 298(5):101859. PubMed ID: 35337802 [Abstract] [Full Text] [Related]
38. Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Kretzschmar U, Rückert A, Jeoung JH, Görisch H. Microbiology (Reading); 2002 Dec 29; 148(Pt 12):3839-3847. PubMed ID: 12480887 [Abstract] [Full Text] [Related]
39. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. Sootsuwan K, Lertwattanasakul N, Thanonkeo P, Matsushita K, Yamada M. J Mol Microbiol Biotechnol; 2008 Dec 29; 14(4):163-75. PubMed ID: 18089934 [Abstract] [Full Text] [Related]
40. The membrane-bound respiratory chain of Pseudomonas pseudoalcaligenes KF707 cells grown in the presence or absence of potassium tellurite. Di Tomaso G, Fedi S, Carnevali M, Manegatti M, Taddei C, Zannoni D. Microbiology (Reading); 2002 Jun 29; 148(Pt 6):1699-1708. PubMed ID: 12055290 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]