These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
333 related items for PubMed ID: 211796
1. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver. Kinnula VL, Hassinen I. Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796 [Abstract] [Full Text] [Related]
2. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km). Reed RD, Pace N. Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568 [Abstract] [Full Text] [Related]
3. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
4. Formation of hexose 6-phosphates from lactate + pyruvate + glutamate by a cell-free system from rat liver. Stoecklin FB, Mörikofer-Zwez S, Walter P. Biochem J; 1986 May 15; 236(1):61-70. PubMed ID: 2878656 [Abstract] [Full Text] [Related]
5. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state. Schönfeld P, Bohnensack R, Böhme G, Kunz W. Biomed Biochim Acta; 1983 May 15; 42(1):3-13. PubMed ID: 6309158 [Abstract] [Full Text] [Related]
6. Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats. Pösö AR, Forsander OA. Acta Chem Scand B; 1976 May 15; 30 B(9):801-6. PubMed ID: 188281 [Abstract] [Full Text] [Related]
7. Regulation of gluconeogenesis during exposure of young rats to hypoxic conditions. Ballard FJ. Biochem J; 1971 Jan 15; 121(2):169-78. PubMed ID: 4330087 [Abstract] [Full Text] [Related]
8. Intracellular oxygen supply during hypoxia. Jones DP, Kennedy FG. Am J Physiol; 1982 Nov 15; 243(5):C247-53. PubMed ID: 7137335 [Abstract] [Full Text] [Related]
9. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Soboll S, Scholz R, Heldt HW. Eur J Biochem; 1978 Jun 15; 87(2):377-90. PubMed ID: 668699 [Abstract] [Full Text] [Related]
11. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense? Caparrotta L, Poja R, Ragazzi E, Froldi G, Pandolfo L, Prosdocimi M, Fassina G. Basic Res Cardiol; 1989 Jun 15; 84(5):449-60. PubMed ID: 2818445 [Abstract] [Full Text] [Related]
12. Regulation of mitochondrial adenine nucleotide content in newborn rabbit liver. Tullson PC, Aprille JR. Am J Physiol; 1987 Nov 15; 253(5 Pt 1):E530-5. PubMed ID: 2891302 [Abstract] [Full Text] [Related]
13. The influence of adenosine on intermediary metabolism of isolated hepatocytes. Marchand JC, Lavoinne A, Giroz M, Matray F. Biochimie; 1979 Nov 15; 61(11-12):1273-82. PubMed ID: 231980 [Abstract] [Full Text] [Related]
14. The development of gluconeogenesis in rat liver. Controlling factors in the newborn. Ballard FJ. Biochem J; 1971 Sep 15; 124(2):265-74. PubMed ID: 4333849 [Abstract] [Full Text] [Related]