These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 21182287
1. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations. Huang D, Becker JG. Environ Sci Technol; 2011 Feb 01; 45(3):1093-9. PubMed ID: 21182287 [Abstract] [Full Text] [Related]
2. Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (PCE)-respiring strains and insight into their application. Huang D, Becker JG. Biotechnol Bioeng; 2009 Oct 01; 104(2):301-11. PubMed ID: 19593756 [Abstract] [Full Text] [Related]
3. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV. J Contam Hydrol; 2012 Apr 01; 131(1-4):9-28. PubMed ID: 22326687 [Abstract] [Full Text] [Related]
4. Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. Amos BK, Christ JA, Abriola LM, Pennell KD, Löffler FE. Environ Sci Technol; 2007 Feb 01; 41(3):963-70. PubMed ID: 17328210 [Abstract] [Full Text] [Related]
5. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Philips J, Springael D, Smolders E. Chemosphere; 2011 May 01; 83(7):991-6. PubMed ID: 21376368 [Abstract] [Full Text] [Related]
6. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation. Chu M, Kitanidis PK, McCarty PL. J Contam Hydrol; 2003 Aug 01; 65(1-2):79-100. PubMed ID: 12855202 [Abstract] [Full Text] [Related]
7. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Sleep BE, Seepersad DJ, Kaiguo MO, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron C, Lollar BS, Major DW, Edwards EA. Environ Sci Technol; 2006 Jun 01; 40(11):3623-33. PubMed ID: 16786703 [Abstract] [Full Text] [Related]
8. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
9. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis. Chen M, Abriola LM, Amos BK, Suchomel EJ, Pennell KD, Löffler FE, Christ JA. J Contam Hydrol; 2013 Aug 20; 151():117-30. PubMed ID: 23774611 [Abstract] [Full Text] [Related]
10. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. Yu S, Semprini L. J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006 [Abstract] [Full Text] [Related]
11. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone. Cápiro NL, Löffler FE, Pennell KD. J Contam Hydrol; 2015 Nov 15; 182():78-90. PubMed ID: 26348832 [Abstract] [Full Text] [Related]
12. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL. J Contam Hydrol; 2004 Oct 15; 74(1-4):265-82. PubMed ID: 15358496 [Abstract] [Full Text] [Related]
13. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Taghavy A, Costanza J, Pennell KD, Abriola LM. J Contam Hydrol; 2010 Nov 25; 118(3-4):128-42. PubMed ID: 20888664 [Abstract] [Full Text] [Related]
14. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. Hiortdahl KM, Borden RC. Environ Sci Technol; 2014 Nov 25; 48(1):624-31. PubMed ID: 24328264 [Abstract] [Full Text] [Related]
15. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 25; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related]
16. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. Heiderscheidt JL, Siegrist RL, Illangasekare TH. J Contam Hydrol; 2008 Nov 14; 102(1-2):3-16. PubMed ID: 18774622 [Abstract] [Full Text] [Related]
17. PCE DNAPL degradation using ferrous iron solid mixture (ISM). Lee HK, Do SH, Batchelor B, Jo YH, Kong SH. Chemosphere; 2009 Aug 14; 76(8):1082-7. PubMed ID: 19439340 [Abstract] [Full Text] [Related]
18. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid. Ramsburg CA, Thornton CE, Christ JA. Environ Sci Technol; 2010 Dec 01; 44(23):9105-11. PubMed ID: 21053958 [Abstract] [Full Text] [Related]
19. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B, Cherry JA, Gillham RW. J Contam Hydrol; 2004 Sep 01; 73(1-4):249-79. PubMed ID: 15336797 [Abstract] [Full Text] [Related]
20. Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I. FEMS Microbiol Ecol; 2007 Oct 01; 62(1):98-107. PubMed ID: 17908097 [Abstract] [Full Text] [Related] Page: [Next] [New Search]