These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W, Feng Y, Wang H, Yang D, An B, Zhang W, Khan M, Guo J. Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [Abstract] [Full Text] [Related]
3. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Wang J, Hu W, Liu Q, Zhang S. Colloids Surf B Biointerfaces; 2011 Jul 01; 85(2):241-7. PubMed ID: 21459560 [Abstract] [Full Text] [Related]
4. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS, Ki CS, Kim JW, Lee KG, Kang SW, Kweon HY, Park YH. Biopolymers; 2012 May 01; 97(5):265-75. PubMed ID: 22169927 [Abstract] [Full Text] [Related]
8. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H, Li X, Zhou G, Fan H, Fan Y. Biomaterials; 2011 May 01; 32(15):3784-93. PubMed ID: 21376391 [Abstract] [Full Text] [Related]
11. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Zhu J, Luo J, Zhao X, Gao J, Xiong J. J Biomater Appl; 2016 Sep 01; 31(3):421-37. PubMed ID: 27422715 [Abstract] [Full Text] [Related]
12. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Wang S, Zhang Y, Wang H, Yin G, Dong Z. Biomacromolecules; 2009 Aug 10; 10(8):2240-4. PubMed ID: 19722559 [Abstract] [Full Text] [Related]
13. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Acta Biomater; 2012 Jan 10; 8(1):289-301. PubMed ID: 22019518 [Abstract] [Full Text] [Related]
14. Preparing silk fibroin nanofibers through electrospinning: further heparin immobilization toward hemocompatibility improvement. Cestari M, Muller V, Rodrigues JH, Nakamura CV, Rubira AF, Muniz EC. Biomacromolecules; 2014 May 12; 15(5):1762-7. PubMed ID: 24724905 [Abstract] [Full Text] [Related]
15. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W. Int J Biol Macromol; 2013 Feb 12; 53():88-92. PubMed ID: 23164753 [Abstract] [Full Text] [Related]
17. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Liu H, Li X, Niu X, Zhou G, Li P, Fan Y. Biomacromolecules; 2011 Aug 08; 12(8):2914-24. PubMed ID: 21714569 [Abstract] [Full Text] [Related]
18. [Property studies on three-dimensional porous blended silk scaffolds]. Rao J, Shen J, Quan D, Xu Y. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct 08; 23(10):1264-70. PubMed ID: 19957853 [Abstract] [Full Text] [Related]
19. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Park KE, Jung SY, Lee SJ, Min BM, Park WH. Int J Biol Macromol; 2006 May 30; 38(3-5):165-73. PubMed ID: 16581120 [Abstract] [Full Text] [Related]
20. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q, Tan W. Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():342-51. PubMed ID: 26478319 [Abstract] [Full Text] [Related] Page: [Next] [New Search]