These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 21187957

  • 1. Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse.
    Whitehead NP, Yeung EW, Froehner SC, Allen DG.
    PLoS One; 2010 Dec 20; 5(12):e15354. PubMed ID: 21187957
    [Abstract] [Full Text] [Related]

  • 2. Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity.
    Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ.
    Antioxid Redox Signal; 2013 Feb 20; 18(6):603-21. PubMed ID: 23050834
    [Abstract] [Full Text] [Related]

  • 3. A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase.
    Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H.
    J Biol Chem; 2010 Oct 08; 285(41):31435-45. PubMed ID: 20679349
    [Abstract] [Full Text] [Related]

  • 4. Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers.
    Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N.
    Pflugers Arch; 2009 Sep 08; 458(5):915-28. PubMed ID: 19387681
    [Abstract] [Full Text] [Related]

  • 5. Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging.
    Loehr JA, Stinnett GR, Hernández-Rivera M, Roten WT, Wilson LJ, Pautler RG, Rodney GG.
    J Physiol; 2016 Nov 01; 594(21):6395-6405. PubMed ID: 27555555
    [Abstract] [Full Text] [Related]

  • 6. NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy.
    Gonzalez DR, Treuer AV, Lamirault G, Mayo V, Cao Y, Dulce RA, Hare JM.
    Am J Physiol Heart Circ Physiol; 2014 Sep 01; 307(5):H710-21. PubMed ID: 25015966
    [Abstract] [Full Text] [Related]

  • 7. Mutagenesis of an arginine- and lysine-rich domain in the gp91(phox) subunit of the phagocyte NADPH-oxidase flavocytochrome b558.
    Biberstine-Kinkade KJ, Yu L, Dinauer MC.
    J Biol Chem; 1999 Apr 09; 274(15):10451-7. PubMed ID: 10187835
    [Abstract] [Full Text] [Related]

  • 8. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells :a potential atherogenic source of reactive oxygen species.
    Meyer JW, Holland JA, Ziegler LM, Chang MM, Beebe G, Schmitt ME.
    Endothelium; 1999 Apr 09; 7(1):11-22. PubMed ID: 10599557
    [Abstract] [Full Text] [Related]

  • 9. Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase.
    Zhao W, Zhao D, Yan R, Sun Y.
    Cardiovasc Pathol; 2009 Apr 09; 18(3):156-66. PubMed ID: 18402834
    [Abstract] [Full Text] [Related]

  • 10. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells.
    Li JM, Shah AM.
    J Biol Chem; 2002 May 31; 277(22):19952-60. PubMed ID: 11893732
    [Abstract] [Full Text] [Related]

  • 11. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK.
    Proc Natl Acad Sci U S A; 1999 Jul 06; 96(14):7944-9. PubMed ID: 10393927
    [Abstract] [Full Text] [Related]

  • 12. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice.
    Kong X, Thimmulappa R, Kombairaju P, Biswal S.
    J Immunol; 2010 Jul 01; 185(1):569-77. PubMed ID: 20511556
    [Abstract] [Full Text] [Related]

  • 13. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.
    Carrichon L, Picciocchi A, Debeurme F, Defendi F, Beaumel S, Jesaitis AJ, Dagher MC, Stasia MJ.
    Biochim Biophys Acta; 2011 Jan 01; 1808(1):78-90. PubMed ID: 20708598
    [Abstract] [Full Text] [Related]

  • 14. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo.
    Zhang WJ, Wei H, Frei B.
    Free Radic Biol Med; 2009 Mar 15; 46(6):791-8. PubMed ID: 19124074
    [Abstract] [Full Text] [Related]

  • 15. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals.
    Khan SR, Khan A, Byer KJ.
    Nephrol Dial Transplant; 2011 Jun 15; 26(6):1778-85. PubMed ID: 21079197
    [Abstract] [Full Text] [Related]

  • 16. Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly.
    Leusen JH, Meischl C, Eppink MH, Hilarius PM, de Boer M, Weening RS, Ahlin A, Sanders L, Goldblatt D, Skopczynska H, Bernatowska E, Palmblad J, Verhoeven AJ, van Berkel WJ, Roos D.
    Blood; 2000 Jan 15; 95(2):666-73. PubMed ID: 10627478
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking".
    Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E.
    J Biol Chem; 2002 Mar 08; 277(10):8421-32. PubMed ID: 11733522
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Nicotinamide adenine dinucleotide phosphate oxidase in the formation of superoxide in osteoclasts.
    Yang S, Ries WL, Key LL.
    Calcif Tissue Int; 1998 Oct 08; 63(4):346-50. PubMed ID: 9744995
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.