These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
76 related items for PubMed ID: 21189371
1. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle. Hadsell DL, Olea W, Wei J, Fiorotto ML, Matsunami RK, Engler DA, Collier RJ. Physiol Genomics; 2011 Mar 29; 43(6):271-85. PubMed ID: 21189371 [Abstract] [Full Text] [Related]
2. Changes in secretory cell turnover, and mitochondrial oxidative damage in the mouse mammary gland during a single prolonged lactation cycle suggest the possibility of accelerated cellular aging. Hadsell DL, Torres D, George J, Capuco AV, Ellis SE, Fiorotto ML. Exp Gerontol; 2006 Mar 29; 41(3):271-81. PubMed ID: 16442254 [Abstract] [Full Text] [Related]
3. Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows. Laubenthal L, Hoelker M, Frahm J, Dänicke S, Gerlach K, Südekum KH, Sauerwein H, Häussler S. J Dairy Sci; 2016 Feb 29; 99(2):1571-1583. PubMed ID: 26686730 [Abstract] [Full Text] [Related]
4. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC. Physiol Genomics; 2007 Feb 12; 28(3):323-36. PubMed ID: 17105756 [Abstract] [Full Text] [Related]
5. Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Davies CR, Morris JS, Griffiths MR, Page MJ, Pitt A, Stein T, Gusterson BA. Proteomics; 2006 Nov 12; 6(21):5694-704. PubMed ID: 17022101 [Abstract] [Full Text] [Related]
6. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. Hadsell DL, Olea W, Lawrence N, George J, Torres D, Kadowaki T, Lee AV. J Endocrinol; 2007 Aug 12; 194(2):327-36. PubMed ID: 17641282 [Abstract] [Full Text] [Related]
7. Developmental changes in mitochondria during the transition into lactation in the mouse mammary gland. Rosano TG, Jones DH. J Cell Biol; 1976 Jun 12; 69(3):573-80. PubMed ID: 1270512 [Abstract] [Full Text] [Related]
8. A comparative study of inner membrane enzymes and transport systems in mitochondria from R3230AC mammary tumor and normal rat mammary gland. Senior AE, McGowan SE, Hilf R. Cancer Res; 1975 Aug 12; 35(8):2061-7. PubMed ID: 167945 [Abstract] [Full Text] [Related]
9. Developmental stage determines the effects of MYC in the mammary epithelium. Blakely CM, Sintasath L, D'Cruz CM, Hahn KT, Dugan KD, Belka GK, Chodosh LA. Development; 2005 Mar 12; 132(5):1147-60. PubMed ID: 15689376 [Abstract] [Full Text] [Related]
10. Different mitochondrial DNA copy number in liver and mammary gland of lactating cows with divergent genetic background for milk production. Weikard R, Kuehn C. Mol Biol Rep; 2018 Oct 12; 45(5):1209-1218. PubMed ID: 30051250 [Abstract] [Full Text] [Related]
11. Developmental regulation of the ovine beta-lactoglobulin/human serum albumin transgene is distinct from that of the beta-lactoglobulin and the endogenous beta-casein genes in the mammary gland of transgenic mice. Baruch A, Shani M, Hurwitz DR, Barash I. Dev Genet; 1995 Oct 12; 16(3):241-52. PubMed ID: 7796533 [Abstract] [Full Text] [Related]
12. Characteristics of mammary mitochondria in lines of mice genetically divergent for milk production. Lindberg GL, Shank BB, Rothschild MF, Mayfield JE, Freeman AE, Koehler CM, Beitz DC. J Dairy Sci; 1989 May 12; 72(5):1175-81. PubMed ID: 2473102 [Abstract] [Full Text] [Related]
13. Developmental changes in mitochondria during the transition into lactation in the mouse mammary gland. II. Membrane marker enzymes and membrane ultrastructure. Rosano TG, Lee SK, Jones DH. J Cell Biol; 1976 Jun 12; 69(3):581-8. PubMed ID: 178667 [Abstract] [Full Text] [Related]
14. Enhancement of maternal lactation performance during prolonged lactation in the mouse by mouse GH and long-R3-IGF-I is linked to changes in mammary signaling and gene expression. Hadsell DL, Parlow AF, Torres D, George J, Olea W. J Endocrinol; 2008 Jul 12; 198(1):61-70. PubMed ID: 18577570 [Abstract] [Full Text] [Related]
15. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Ling B, Alcorn J. Res Vet Sci; 2010 Oct 12; 89(2):200-2. PubMed ID: 20381822 [Abstract] [Full Text] [Related]
17. Technical note: assessing the functional capacity of mitochondria isolated from lactating mammary tissue: choose your chelating agent wisely. Hadsell DL, George J, Abraham PA, Collier RJ, Lambert BD. J Dairy Sci; 2009 May 12; 92(5):2038-45. PubMed ID: 19389961 [Abstract] [Full Text] [Related]
18. Developmental gene expression of lactoferrin and effect of dietary iron on gene regulation of lactoferrin in mouse mammary gland. Wang Y, Tu Y, Han F, Xu Z, Wang J. J Dairy Sci; 2005 Jun 12; 88(6):2065-71. PubMed ID: 15905437 [Abstract] [Full Text] [Related]
19. Changes in the cyclic 3', 5'-adenosine monophosphate system of rat mammary gland during lactation cycle. Louis SL, Baldwin RL. J Dairy Sci; 1975 Jun 12; 58(6):861-9. PubMed ID: 167062 [Abstract] [Full Text] [Related]
20. Regulation of gene expression in the bovine mammary gland by ovarian steroids. Connor EE, Meyer MJ, Li RW, Van Amburgh ME, Boisclair YR, Capuco AV. J Dairy Sci; 2007 Jun 12; 90 Suppl 1():E55-65. PubMed ID: 17517752 [Abstract] [Full Text] [Related] Page: [Next] [New Search]