These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


580 related items for PubMed ID: 21194547

  • 1. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH, Chang HC, Lee PL, Li KS, Sie JJ, Sun CW, Yang CY, Li PH, Deng HT, Shyu KK.
    J Neurosci Methods; 2011 Mar 15; 196(1):170-81. PubMed ID: 21194547
    [Abstract] [Full Text] [Related]

  • 2. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.
    Lee PL, Sie JJ, Liu YJ, Wu CH, Lee MH, Shu CH, Li PH, Sun CW, Shyu KK.
    Ann Biomed Eng; 2010 Jul 15; 38(7):2383-97. PubMed ID: 20177780
    [Abstract] [Full Text] [Related]

  • 3. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC, Lee PL, Lo MT, Lee IH, Yeh TK, Chang CY.
    IEEE Trans Neural Syst Rehabil Eng; 2012 May 15; 20(3):305-12. PubMed ID: 22203724
    [Abstract] [Full Text] [Related]

  • 4. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL, Yeh CL, Cheng JY, Yang CY, Lan GY.
    IEEE Trans Biomed Eng; 2011 Dec 15; 58(12):3350-9. PubMed ID: 21788179
    [Abstract] [Full Text] [Related]

  • 5. Emotional faces boost up steady-state visual responses for brain-computer interface.
    Bakardjian H, Tanaka T, Cichocki A.
    Neuroreport; 2011 Feb 16; 22(3):121-5. PubMed ID: 21178643
    [Abstract] [Full Text] [Related]

  • 6. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ, Rosipal R, Matthews B.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 16; 14(2):225-9. PubMed ID: 16792300
    [Abstract] [Full Text] [Related]

  • 7. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA, Prieto A, Pelayo F, Morillas C.
    Clin Neurophysiol; 2011 Jan 16; 122(1):128-33. PubMed ID: 20573542
    [Abstract] [Full Text] [Related]

  • 8. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
    Volosyak I, Valbuena D, Lüth T, Malechka T, Gräser A.
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun 16; 19(3):232-9. PubMed ID: 21421448
    [Abstract] [Full Text] [Related]

  • 9. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C, Allison BZ, Altstätter C, Neuper C.
    J Neural Eng; 2011 Apr 16; 8(2):025010. PubMed ID: 21436538
    [Abstract] [Full Text] [Related]

  • 10. Stimulator selection in SSVEP-based BCI.
    Wu Z, Lai Y, Xia Y, Wu D, Yao D.
    Med Eng Phys; 2008 Oct 16; 30(8):1079-88. PubMed ID: 18316226
    [Abstract] [Full Text] [Related]

  • 11. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs.
    Wu Z, Yao D.
    J Neural Eng; 2008 Mar 16; 5(1):36-43. PubMed ID: 18310809
    [Abstract] [Full Text] [Related]

  • 12. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N, Itakura N.
    Electromyogr Clin Neurophysiol; 2008 Mar 16; 48(1):43-51. PubMed ID: 18338534
    [Abstract] [Full Text] [Related]

  • 13. An SSVEP-based brain-computer interface for the control of functional electrical stimulation.
    Gollee H, Volosyak I, McLachlan AJ, Hunt KJ, Gräser A.
    IEEE Trans Biomed Eng; 2010 Aug 16; 57(8):1847-55. PubMed ID: 20176528
    [Abstract] [Full Text] [Related]

  • 14. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
    Luo A, Sullivan TJ.
    J Neural Eng; 2010 Apr 16; 7(2):26010. PubMed ID: 20332551
    [Abstract] [Full Text] [Related]

  • 15. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP, Lalor EC, Reilly RB, Foxe JJ.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 16; 13(2):172-8. PubMed ID: 16003896
    [Abstract] [Full Text] [Related]

  • 16. Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.
    Wu HY, Lee PL, Chang HC, Hsieh JC.
    IEEE Trans Biomed Eng; 2011 May 16; 58(5):1394-402. PubMed ID: 21193370
    [Abstract] [Full Text] [Related]

  • 17. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.
    Bin G, Gao X, Yan Z, Hong B, Gao S.
    J Neural Eng; 2009 Aug 16; 6(4):046002. PubMed ID: 19494422
    [Abstract] [Full Text] [Related]

  • 18. SSVEP-based Bremen-BCI interface--boosting information transfer rates.
    Volosyak I.
    J Neural Eng; 2011 Jun 16; 8(3):036020. PubMed ID: 21555847
    [Abstract] [Full Text] [Related]

  • 19. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, Müller-Putz GR.
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug 16; 18(4):409-14. PubMed ID: 20144923
    [Abstract] [Full Text] [Related]

  • 20. Frequency and phase mixed coding in SSVEP-based brain--computer interface.
    Jia C, Gao X, Hong B, Gao S.
    IEEE Trans Biomed Eng; 2011 Jan 16; 58(1):200-6. PubMed ID: 20729160
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.