These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
685 related items for PubMed ID: 21204601
21. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. Wei N, Oh EJ, Million G, Cate JH, Jin YS. ACS Synth Biol; 2015 Jun 19; 4(6):707-13. PubMed ID: 25587748 [Abstract] [Full Text] [Related]
22. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. van Zyl WH, Lynd LR, den Haan R, McBride JE. Adv Biochem Eng Biotechnol; 2007 Jun 19; 108():205-35. PubMed ID: 17846725 [Abstract] [Full Text] [Related]
23. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. Yeast; 2005 Apr 15; 22(5):359-68. PubMed ID: 15806613 [Abstract] [Full Text] [Related]
24. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae. Kahar P, Taku K, Tanaka S. J Biosci Bioeng; 2011 May 15; 111(5):557-63. PubMed ID: 21257343 [Abstract] [Full Text] [Related]
25. Ethanol production from corn cob hydrolysates by Escherichia coli KO11. de Carvalho Lima KG, Takahashi CM, Alterthum F. J Ind Microbiol Biotechnol; 2002 Sep 15; 29(3):124-8. PubMed ID: 12242633 [Abstract] [Full Text] [Related]
26. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. J Biotechnol; 2006 Dec 01; 126(4):488-98. PubMed ID: 16828190 [Abstract] [Full Text] [Related]
27. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Sànchez Nogué V, Karhumaa K. Biotechnol Lett; 2015 Apr 01; 37(4):761-72. PubMed ID: 25522734 [Abstract] [Full Text] [Related]
28. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R, Pramanik K. Appl Biochem Biotechnol; 2012 Jun 01; 167(4):873-84. PubMed ID: 22639357 [Abstract] [Full Text] [Related]
29. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Wiedemann B, Boles E. Appl Environ Microbiol; 2008 Apr 01; 74(7):2043-50. PubMed ID: 18263741 [Abstract] [Full Text] [Related]
30. [Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses]. Dmytruk OV, Dmytruk KV, Voronovs'kyĭ AIa, Sybirnyĭ AA. Tsitol Genet; 2008 Apr 01; 42(2):70-84. PubMed ID: 18630124 [Abstract] [Full Text] [Related]
33. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K, Sanda T, Hasunuma T, Kondo A. Bioresour Technol; 2012 May 01; 111():161-6. PubMed ID: 22357292 [Abstract] [Full Text] [Related]