These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 21205184
1. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. Yang J, An D, Zhang P. J Integr Plant Biol; 2011 Mar; 53(3):193-211. PubMed ID: 21205184 [Abstract] [Full Text] [Related]
2. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. Sojikul P, Kongsawadworakul P, Viboonjun U, Thaiprasit J, Intawong B, Narangajavana J, Svasti MR. Physiol Plant; 2010 Oct; 140(2):189-98. PubMed ID: 20536786 [Abstract] [Full Text] [Related]
3. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Sci Rep; 2016 Jan 21; 6():19643. PubMed ID: 26791570 [Abstract] [Full Text] [Related]
4. Predominantly symplastic phloem unloading of photosynthates maintains efficient starch accumulation in the cassava storage roots (Manihot esculenta Crantz). Pan K, Lu C, Nie P, Hu M, Zhou X, Chen X, Wang W. BMC Plant Biol; 2021 Jul 03; 21(1):318. PubMed ID: 34217217 [Abstract] [Full Text] [Related]
5. Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, Utsumi Y, Sakurai T, Seki M, Narangajavana J. Plant Mol Biol; 2015 Aug 03; 88(6):531-43. PubMed ID: 26118659 [Abstract] [Full Text] [Related]
6. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H. Plant J; 2011 Jul 03; 67(1):145-56. PubMed ID: 21435052 [Abstract] [Full Text] [Related]
8. Two cassava promoters related to vascular expression and storage root formation. Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W. Planta; 2003 Dec 18; 218(2):192-203. PubMed ID: 13680228 [Abstract] [Full Text] [Related]
9. Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Carvalho LJ, de Souza CR, de Mattos Cascardo JC, Junior CB, Campos L. Plant Mol Biol; 2004 Nov 18; 56(4):643-59. PubMed ID: 15630625 [Abstract] [Full Text] [Related]
10. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. Carvalho LJ, Agustini MA, Anderson JV, Vieira EA, de Souza CR, Chen S, Schaal BA, Silva JP. BMC Plant Biol; 2016 Jun 10; 16(1):133. PubMed ID: 27286876 [Abstract] [Full Text] [Related]
11. Cassava root membrane proteome reveals activities during storage root maturation. Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J. J Plant Res; 2016 Jan 10; 129(1):51-65. PubMed ID: 26547558 [Abstract] [Full Text] [Related]
12. Characters related to higher starch accumulation in cassava storage roots. Li YZ, Zhao JY, Wu SM, Fan XW, Luo XL, Chen BS. Sci Rep; 2016 Feb 19; 6():19823. PubMed ID: 26892156 [Abstract] [Full Text] [Related]
13. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots. Liu S, Zainuddin IM, Vanderschuren H, Doughty J, Beeching JR. Plant Mol Biol; 2017 May 19; 94(1-2):185-195. PubMed ID: 28315989 [Abstract] [Full Text] [Related]
14. Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Siebers T, Catarino B, Agusti J. Planta; 2017 Mar 19; 245(3):539-548. PubMed ID: 27900471 [Abstract] [Full Text] [Related]
15. Genetic modification of cassava for enhanced starch production. Ihemere U, Arias-Garzon D, Lawrence S, Sayre R. Plant Biotechnol J; 2006 Jul 19; 4(4):453-65. PubMed ID: 17177810 [Abstract] [Full Text] [Related]
16. Changes in sucrose metabolism patterns affect the early maturation of Cassava sexual tetraploid roots. Lai H, Zhou Y, Chen W, Deng Y, Qiu Y, Chen X, Guo J. BMC Plant Biol; 2022 Dec 10; 22(1):574. PubMed ID: 36496357 [Abstract] [Full Text] [Related]
17. Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots. Kwak MS, Noh SA, Oh MJ, Huh GH, Kim KN, Lee SW, Shin JS, Bae JM. Gene; 2006 Jan 17; 366(1):87-96. PubMed ID: 16338103 [Abstract] [Full Text] [Related]
18. Isolation and partial characterization of a root-specific promoter for stacking multiple traits into cassava (Manihot esculenta CRANTZ). Gbadegesin MA, Beeching JR. Genet Mol Res; 2011 Jun 07; 10(2):1032-41. PubMed ID: 21710453 [Abstract] [Full Text] [Related]
19. The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Sheffield J, Taylor N, Fauquet C, Chen S. Proteomics; 2006 Mar 07; 6(5):1588-98. PubMed ID: 16421938 [Abstract] [Full Text] [Related]
20. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. J Exp Bot; 2021 May 04; 72(10):3688-3703. PubMed ID: 33712830 [Abstract] [Full Text] [Related] Page: [Next] [New Search]