These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
930 related items for PubMed ID: 21205996
1. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK. Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996 [Abstract] [Full Text] [Related]
2. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [Abstract] [Full Text] [Related]
3. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X, Liu L, Zhang Q. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [Abstract] [Full Text] [Related]
4. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [Abstract] [Full Text] [Related]
5. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH, Park IK, Kim JM, Lee JH. Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [Abstract] [Full Text] [Related]
6. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM. J Biomater Sci Polym Ed; 2014 Mar; 25(16):1856-74. PubMed ID: 25178801 [Abstract] [Full Text] [Related]
7. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S. Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [Abstract] [Full Text] [Related]
8. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [Abstract] [Full Text] [Related]
9. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X. J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [Abstract] [Full Text] [Related]
10. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261 [Abstract] [Full Text] [Related]
11. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP, Chen YY, Hsieh MF, Lee HM. Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [Abstract] [Full Text] [Related]
12. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Du F, Wang H, Zhao W, Li D, Kong D, Yang J, Zhang Y. Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285 [Abstract] [Full Text] [Related]
13. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J, Yu X. Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [Abstract] [Full Text] [Related]
14. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA, Lee SH, Kim WD. Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [Abstract] [Full Text] [Related]
15. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, Hutmacher DW. Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [Abstract] [Full Text] [Related]
16. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT. J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575 [Abstract] [Full Text] [Related]
17. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L, Ao Q, Wang A, Gong K, Wang X, Lu G, Gong Y, Zhao N, Zhang X. J Biomater Appl; 2007 Nov 01; 22(3):223-39. PubMed ID: 17255157 [Abstract] [Full Text] [Related]
18. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. Chang KY, Hung LH, Chu IM, Ko CS, Lee YD. J Biomed Mater Res A; 2010 Feb 01; 92(2):712-23. PubMed ID: 19274722 [Abstract] [Full Text] [Related]
19. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y. Biofabrication; 2010 Jun 01; 2(2):025002. PubMed ID: 20811130 [Abstract] [Full Text] [Related]
20. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related] Page: [Next] [New Search]