These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


394 related items for PubMed ID: 21206967

  • 21. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]

  • 22. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM.
    J Biomater Sci Polym Ed; 2014 Aug; 25(16):1856-74. PubMed ID: 25178801
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds.
    Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A.
    J Tissue Eng Regen Med; 2007 Aug; 1(6):417-24. PubMed ID: 18247428
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone).
    Theiler S, Mela P, Diamantouros SE, Jockenhoevel S, Keul H, Möller M.
    Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513
    [Abstract] [Full Text] [Related]

  • 27. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575
    [Abstract] [Full Text] [Related]

  • 28. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair.
    Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, Karperien M, Mano JF.
    Biomaterials; 2011 Feb 01; 32(4):1068-79. PubMed ID: 20980050
    [Abstract] [Full Text] [Related]

  • 29. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE.
    Biomaterials; 2012 Jun 01; 33(17):4309-18. PubMed ID: 22436798
    [Abstract] [Full Text] [Related]

  • 30. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M.
    Biomaterials; 2005 Jun 01; 26(18):3919-28. PubMed ID: 15626439
    [Abstract] [Full Text] [Related]

  • 31. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.
    Kim MS, Kim G.
    Carbohydr Polym; 2014 Dec 19; 114():213-221. PubMed ID: 25263884
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI, Krebs MD, Bonino CA, Samorezov JE, Khan SA, Alsberg E.
    Tissue Eng Part A; 2011 Jan 19; 17(1-2):59-70. PubMed ID: 20672984
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.
    Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E.
    Acta Biomater; 2010 Apr 19; 6(4):1227-37. PubMed ID: 19887125
    [Abstract] [Full Text] [Related]

  • 36. Three-dimensional tissue scaffolds from interbonded poly(ε-caprolactone) fibrous matrices with controlled porosity.
    Tang Y, Wong C, Wang H, Sutti A, Kirkland M, Wang X, Lin T.
    Tissue Eng Part C Methods; 2011 Feb 19; 17(2):209-18. PubMed ID: 20799890
    [Abstract] [Full Text] [Related]

  • 37. Cell-laden poly(ɛ-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution.
    Lee H, Ahn S, Bonassar LJ, Chun W, Kim G.
    Tissue Eng Part C Methods; 2013 Oct 19; 19(10):784-93. PubMed ID: 23469894
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering.
    Qi X, Ye J, Wang Y.
    J Biomed Mater Res A; 2009 Jun 15; 89(4):980-7. PubMed ID: 18470921
    [Abstract] [Full Text] [Related]

  • 40. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A, Colombus S, Krishnan VK, Krishnan LK.
    J Tissue Eng Regen Med; 2012 Jun 15; 6(6):451-61. PubMed ID: 21800434
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.