These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 21207963

  • 1. Liquid-liquid mass transfer of partitioning electron donors in chlorinated solvent source zones.
    Cápiro NL, Granbery EK, Lebrón CA, Major DW, McMaster ML, Pound MJ, Löffler FE, Pennell KD.
    Environ Sci Technol; 2011 Feb 15; 45(4):1547-54. PubMed ID: 21207963
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants.
    Suchomel EJ, Ramsburg CA, Pennell KD.
    J Contam Hydrol; 2007 Dec 07; 94(3-4):195-214. PubMed ID: 17628205
    [Abstract] [Full Text] [Related]

  • 3. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
    Haest PJ, Springael D, Seuntjens P, Smolders E.
    Chemosphere; 2012 Nov 07; 89(11):1369-75. PubMed ID: 22749126
    [Abstract] [Full Text] [Related]

  • 4. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M, Fisher A.
    J Contam Hydrol; 2013 Aug 07; 151():16-33. PubMed ID: 23697993
    [Abstract] [Full Text] [Related]

  • 5. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO, Dearden RA, Wealthall GP.
    J Contam Hydrol; 2014 Dec 01; 170():95-115. PubMed ID: 25444120
    [Abstract] [Full Text] [Related]

  • 6. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL, Cherry JA, Chapman SW.
    J Contam Hydrol; 2004 Oct 01; 74(1-4):197-230. PubMed ID: 15358493
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.
    Philips J, Maes N, Springael D, Smolders E.
    J Contam Hydrol; 2013 Apr 01; 147():25-33. PubMed ID: 23500838
    [Abstract] [Full Text] [Related]

  • 9. Kinetic limitations on tracer partitioning in ganglia dominated source zones.
    Ervin RE, Boroumand A, Abriola LM, Ramsburg CA.
    J Contam Hydrol; 2011 Nov 01; 126(3-4):195-207. PubMed ID: 22115085
    [Abstract] [Full Text] [Related]

  • 10. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling.
    Philips J, Miroshnikov A, Haest PJ, Springael D, Smolders E.
    J Contam Hydrol; 2014 Dec 01; 170():28-38. PubMed ID: 25306502
    [Abstract] [Full Text] [Related]

  • 11. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils.
    Lee S.
    J Hazard Mater; 2007 Jun 25; 145(1-2):17-22. PubMed ID: 17126487
    [Abstract] [Full Text] [Related]

  • 12. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA, Thornton CE, Christ JA.
    Environ Sci Technol; 2010 Dec 01; 44(23):9105-11. PubMed ID: 21053958
    [Abstract] [Full Text] [Related]

  • 13. Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: a flux-based analysis using diffusion-cells.
    Philips J, Van Muylder R, Springael D, Smolders E.
    Chemosphere; 2013 Mar 01; 91(1):7-13. PubMed ID: 23228910
    [Abstract] [Full Text] [Related]

  • 14. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L, Smolders E.
    Chemosphere; 2015 Jan 01; 119():1113-1119. PubMed ID: 25460750
    [Abstract] [Full Text] [Related]

  • 15. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2004 Oct 01; 74(1-4):265-82. PubMed ID: 15358496
    [Abstract] [Full Text] [Related]

  • 16. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S, Semprini L.
    J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006
    [Abstract] [Full Text] [Related]

  • 17. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A, Costanza J, Pennell KD, Abriola LM.
    J Contam Hydrol; 2010 Nov 25; 118(3-4):128-42. PubMed ID: 20888664
    [Abstract] [Full Text] [Related]

  • 18. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA, Newell CJ, Adamson DT, Sale TC.
    J Contam Hydrol; 2012 Jun 25; 134-135():69-81. PubMed ID: 22591740
    [Abstract] [Full Text] [Related]

  • 19. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ, Tick GR, Carroll KC.
    J Contam Hydrol; 2017 Sep 25; 204():40-56. PubMed ID: 28780996
    [Abstract] [Full Text] [Related]

  • 20. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems.
    Yeh CK, Wu HM, Chen TC.
    J Hazard Mater; 2003 Jan 03; 96(1):29-51. PubMed ID: 12475477
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.