These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V. Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857 [Abstract] [Full Text] [Related]
3. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z. J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [Abstract] [Full Text] [Related]
4. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW. J Biomed Mater Res A; 2008 Dec 15; 87(4):850-61. PubMed ID: 18200543 [Abstract] [Full Text] [Related]
5. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro]. Pan H, Zheng Q, Guo X. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan 15; 21(1):65-9. PubMed ID: 17305008 [Abstract] [Full Text] [Related]
7. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX, Ren J, Chen C, Ren TB, Zhou XY. J Biomater Appl; 2008 Mar 15; 22(5):409-32. PubMed ID: 17494961 [Abstract] [Full Text] [Related]
8. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y. Biofabrication; 2010 Jun 15; 2(2):025002. PubMed ID: 20811130 [Abstract] [Full Text] [Related]
9. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV, Thomas V, Xu Y, Bellis S, Nyairo E, Dean D. Macromol Biosci; 2010 Apr 08; 10(4):433-44. PubMed ID: 20112236 [Abstract] [Full Text] [Related]
10. Multiwalled carbon nanotube-modified poly(D,L-lactide-co-glycolide) scaffolds for dendritic cell load. Yang Y, Shi S, Ding Q, Chen J, Peng J, Xu Y. J Biomed Mater Res A; 2015 Mar 08; 103(3):1045-52. PubMed ID: 24909141 [Abstract] [Full Text] [Related]
11. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W, Shi X, Ren L, Du C, Wang Y. Biomaterials; 2010 May 08; 31(15):4278-85. PubMed ID: 20199806 [Abstract] [Full Text] [Related]
12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH, El-Amin SF, Scott KD, Laurencin CT. J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560 [Abstract] [Full Text] [Related]
13. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. Tanaka T, Hirose M, Kotobuki N, Tadokoro M, Ohgushi H, Fukuchi T, Sato J, Seto K. J Biomed Mater Res A; 2009 Nov 01; 91(2):428-35. PubMed ID: 18985782 [Abstract] [Full Text] [Related]
14. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Park GE, Pattison MA, Park K, Webster TJ. Biomaterials; 2005 Jun 01; 26(16):3075-82. PubMed ID: 15603802 [Abstract] [Full Text] [Related]
15. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. Bone; 2009 Jul 01; 45(1):4-16. PubMed ID: 19358900 [Abstract] [Full Text] [Related]
16. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications. Park JK, Yeom J, Oh EJ, Reddy M, Kim JY, Cho DW, Lim HP, Kim NS, Park SW, Shin HI, Yang DJ, Park KB, Hahn SK. Acta Biomater; 2009 Nov 01; 5(9):3394-403. PubMed ID: 19477304 [Abstract] [Full Text] [Related]
17. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Shi X, Wang Y, Varshney RR, Ren L, Gong Y, Wang DA. Eur J Pharm Sci; 2010 Jan 31; 39(1-3):59-67. PubMed ID: 19895885 [Abstract] [Full Text] [Related]
18. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. J Biomed Mater Res A; 2003 Jul 01; 66(1):29-37. PubMed ID: 12833428 [Abstract] [Full Text] [Related]
19. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D, Watzinger E, Weissenböck M, Yerit K, Cvikl B, Thurnher D, Ewers R. Clin Oral Implants Res; 2005 Aug 01; 16(4):417-24. PubMed ID: 16117765 [Abstract] [Full Text] [Related]
20. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Shi X, Wang Y, Ren L, Huang W, Wang DA. Int J Pharm; 2009 May 21; 373(1-2):85-92. PubMed ID: 19429292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]