These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


579 related items for PubMed ID: 21208787

  • 1. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering.
    Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q.
    Colloids Surf B Biointerfaces; 2011 Apr 01; 83(2):367-75. PubMed ID: 21208787
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.
    Karp JM, Shoichet MS, Davies JE.
    J Biomed Mater Res A; 2003 Feb 01; 64(2):388-96. PubMed ID: 12522827
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.
    Biofabrication; 2010 Jun 01; 2(2):025002. PubMed ID: 20811130
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Multiwalled carbon nanotube-modified poly(D,L-lactide-co-glycolide) scaffolds for dendritic cell load.
    Yang Y, Shi S, Ding Q, Chen J, Peng J, Xu Y.
    J Biomed Mater Res A; 2015 Mar 01; 103(3):1045-52. PubMed ID: 24909141
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH, El-Amin SF, Scott KD, Laurencin CT.
    J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560
    [Abstract] [Full Text] [Related]

  • 13. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds.
    Tanaka T, Hirose M, Kotobuki N, Tadokoro M, Ohgushi H, Fukuchi T, Sato J, Seto K.
    J Biomed Mater Res A; 2009 Nov 01; 91(2):428-35. PubMed ID: 18985782
    [Abstract] [Full Text] [Related]

  • 14. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE, Pattison MA, Park K, Webster TJ.
    Biomaterials; 2005 Jun 01; 26(16):3075-82. PubMed ID: 15603802
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH.
    J Biomed Mater Res A; 2003 Jul 01; 66(1):29-37. PubMed ID: 12833428
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.