These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 21222652

  • 21. Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis.
    Jiang L, Ferraris RP.
    Am J Physiol Gastrointest Liver Physiol; 2001 Jan; 280(1):G113-20. PubMed ID: 11123204
    [Abstract] [Full Text] [Related]

  • 22. Dietary modulation of intestinal fructose transport and GLUT5 mRNA expression in hypothyroid rat pups.
    Monteiro IM, Jiang L, Ferraris RP.
    J Pediatr Gastroenterol Nutr; 1999 Nov; 29(5):563-70. PubMed ID: 10554124
    [Abstract] [Full Text] [Related]

  • 23. Trimethylation of histone H3K4 is associated with the induction of fructose-inducible genes in rat jejunum.
    Yoshinaga Y, Mochizuki K, Goda T.
    Biochem Biophys Res Commun; 2012 Mar 23; 419(4):605-11. PubMed ID: 22366086
    [Abstract] [Full Text] [Related]

  • 24. Feeding rats dietary resistant starch shifts the peak of SGLT1 gene expression and histone H3 acetylation on the gene from the upper jejunum toward the ileum.
    Shimada M, Mochizuki K, Goda T.
    J Agric Food Chem; 2009 Sep 09; 57(17):8049-55. PubMed ID: 19722712
    [Abstract] [Full Text] [Related]

  • 25. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate.
    Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Ionescu C, Bravo D, Shirazi-Beechey SP.
    Br J Nutr; 2010 Sep 09; 104(5):647-55. PubMed ID: 20385036
    [Abstract] [Full Text] [Related]

  • 26. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway.
    Cui XL, Schlesier AM, Fisher EL, Cerqueira C, Ferraris RP.
    Am J Physiol Gastrointest Liver Physiol; 2005 Jun 09; 288(6):G1310-20. PubMed ID: 15691865
    [Abstract] [Full Text] [Related]

  • 27. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes.
    Castelló A, Gumá A, Sevilla L, Furriols M, Testar X, Palacín M, Zorzano A.
    Biochem J; 1995 Jul 01; 309 ( Pt 1)(Pt 1):271-7. PubMed ID: 7619068
    [Abstract] [Full Text] [Related]

  • 28. De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells.
    Takabe S, Mochizuki K, Goda T.
    Arch Biochem Biophys; 2008 Jul 01; 475(1):1-6. PubMed ID: 18424253
    [Abstract] [Full Text] [Related]

  • 29. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars.
    Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, Oka T, Nakabou Y.
    Biochem J; 1993 Oct 01; 295 ( Pt 1)(Pt 1):211-5. PubMed ID: 8216218
    [Abstract] [Full Text] [Related]

  • 30. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation.
    Jiang L, David ES, Espina N, Ferraris RP.
    Am J Physiol Gastrointest Liver Physiol; 2001 Sep 01; 281(3):G666-74. PubMed ID: 11518678
    [Abstract] [Full Text] [Related]

  • 31. Precocious enhancement of intestinal fructose uptake by diet in adrenalectomized rat pups.
    Monteiro IM, Ferraris RP.
    Pediatr Res; 1997 Mar 01; 41(3):353-8. PubMed ID: 9078534
    [Abstract] [Full Text] [Related]

  • 32. Intestinal fructose transport and malabsorption in humans.
    Jones HF, Butler RN, Brooks DA.
    Am J Physiol Gastrointest Liver Physiol; 2011 Feb 01; 300(2):G202-6. PubMed ID: 21148401
    [Abstract] [Full Text] [Related]

  • 33. Acute interactions between intestinal sugar and calcium transport in vitro.
    Tharabenjasin P, Douard V, Patel C, Krishnamra N, Johnson RJ, Zuo J, Ferraris RP.
    Am J Physiol Gastrointest Liver Physiol; 2014 Jan 01; 306(1):G1-12. PubMed ID: 24177030
    [Abstract] [Full Text] [Related]

  • 34. d-Allulose is a substrate of glucose transporter type 5 (GLUT5) in the small intestine.
    Kishida K, Martinez G, Iida T, Yamada T, Ferraris RP, Toyoda Y.
    Food Chem; 2019 Mar 30; 277():604-608. PubMed ID: 30502192
    [Abstract] [Full Text] [Related]

  • 35. Carbohydrate/fat ratio in the diet alters histone acetylation on the sucrase-isomaltase gene and its expression in mouse small intestine.
    Honma K, Mochizuki K, Goda T.
    Biochem Biophys Res Commun; 2007 Jun 15; 357(4):1124-9. PubMed ID: 17466947
    [Abstract] [Full Text] [Related]

  • 36. Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2.
    Drozdowski LA, Woudstra TD, Wild GE, Clandinin MT, Thomson AB.
    J Nutr Biochem; 2004 Oct 15; 15(10):630-7. PubMed ID: 15542355
    [Abstract] [Full Text] [Related]

  • 37. Expression of fructose sensitive glucose transporter in the brains of fructose-fed rats.
    Shu HJ, Isenberg K, Cormier RJ, Benz A, Zorumski CF.
    Neuroscience; 2006 Jul 07; 140(3):889-95. PubMed ID: 16581195
    [Abstract] [Full Text] [Related]

  • 38. Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma.
    Mitani Y, Oue N, Hamai Y, Aung PP, Matsumura S, Nakayama H, Kamata N, Yasui W.
    J Pathol; 2005 Jan 07; 205(1):65-73. PubMed ID: 15586362
    [Abstract] [Full Text] [Related]

  • 39. Cyclic AMP stimulates fructose transport in neonatal rat small intestine.
    Cui XL, Ananian C, Perez E, Strenger A, Beuve AV, Ferraris RP.
    J Nutr; 2004 Jul 07; 134(7):1697-703. PubMed ID: 15226456
    [Abstract] [Full Text] [Related]

  • 40. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR.
    Zwarts I, van Zutphen T, Kruit JK, Liu W, Oosterveer MH, Verkade HJ, Uhlenhaut NH, Jonker JW.
    Sci Rep; 2019 Jun 26; 9(1):9299. PubMed ID: 31243309
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.