These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 21231994

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].
    Pimenov NV, Ul'ianova MO, Kanapatski TA, Sivkov VV, Ivanov MV.
    Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347
    [Abstract] [Full Text] [Related]

  • 5. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.
    Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR.
    Environ Microbiol; 2012 Oct; 14(10):2726-40. PubMed ID: 22827909
    [Abstract] [Full Text] [Related]

  • 6. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F.
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [Abstract] [Full Text] [Related]

  • 7. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane.
    Deusner C, Meyer V, Ferdelman TG.
    Biotechnol Bioeng; 2010 Feb 15; 105(3):524-33. PubMed ID: 19787639
    [Abstract] [Full Text] [Related]

  • 8. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B, Samarkin V, Boetius A, Joye S.
    Environ Microbiol; 2008 May 15; 10(5):1108-17. PubMed ID: 18218032
    [Abstract] [Full Text] [Related]

  • 9. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK.
    Curr Opin Microbiol; 2011 Jun 15; 14(3):292-9. PubMed ID: 21489863
    [Abstract] [Full Text] [Related]

  • 10. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
    Jagersma GC, Meulepas RJ, Heikamp-de Jong I, Gieteling J, Klimiuk A, Schouten S, Damsté JS, Lens PN, Stams AJ.
    Environ Microbiol; 2009 Dec 15; 11(12):3223-32. PubMed ID: 19703218
    [Abstract] [Full Text] [Related]

  • 11. [Microbiological processes at the interface of aerobic and anaerobic waters in the deep-water zone of the Black Sea].
    Pimenov NV, Rusanov II, Iusupov SK, Fridrich J, Lein AIu, Wehrli B, Ivanov MV.
    Mikrobiologiia; 2000 Dec 15; 69(4):527-40. PubMed ID: 11008690
    [Abstract] [Full Text] [Related]

  • 12. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A.
    Environ Microbiol; 2008 Sep 15; 10(9):2287-98. PubMed ID: 18498367
    [Abstract] [Full Text] [Related]

  • 13. Biogeochemistry. 'Inconceivable' bugs eat methane on the ocean floor.
    Zimmer C.
    Science; 2001 Jul 20; 293(5529):418-9. PubMed ID: 11463895
    [No Abstract] [Full Text] [Related]

  • 14. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.
    Timmers PH, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJ, Plugge CM.
    ISME J; 2016 Jun 20; 10(6):1400-12. PubMed ID: 26636551
    [Abstract] [Full Text] [Related]

  • 15. A marine microbial consortium apparently mediating anaerobic oxidation of methane.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O.
    Nature; 2000 Oct 05; 407(6804):623-6. PubMed ID: 11034209
    [Abstract] [Full Text] [Related]

  • 16. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB.
    Science; 2002 Aug 09; 297(5583):1013-5. PubMed ID: 12169733
    [Abstract] [Full Text] [Related]

  • 17. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K, Treude T, Boetius A, Krüger M.
    Environ Microbiol; 2005 Jan 09; 7(1):98-106. PubMed ID: 15643940
    [Abstract] [Full Text] [Related]

  • 18. Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF.
    Science; 2004 Sep 03; 305(5689):1457-62. PubMed ID: 15353801
    [Abstract] [Full Text] [Related]

  • 19. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, Hornibrook E, Pancost RD, Kelly S, Knab N, Jørgensen BB, Rinna J, Weightman AJ.
    Environ Microbiol; 2007 May 03; 9(5):1146-61. PubMed ID: 17472631
    [Abstract] [Full Text] [Related]

  • 20. Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis.
    Cassarini C, Rene ER, Bhattarai S, Vogt C, Musat N, Lens PNL.
    Chemosphere; 2019 Dec 03; 236():124290. PubMed ID: 31310977
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.