These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 21233549

  • 1. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy.
    Ziegler D, Stemmer A.
    Nanotechnology; 2011 Feb 18; 22(7):075501. PubMed ID: 21233549
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Atomic contact potential variations of Si(111)-7 x 7 analyzed by Kelvin probe force microscopy.
    Kawai S, Glatzel T, Hug HJ, Meyer E.
    Nanotechnology; 2010 Jun 18; 21(24):245704. PubMed ID: 20484786
    [Abstract] [Full Text] [Related]

  • 8. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L, Bocquet F, Loppacher C, Glatzel T.
    Nanotechnology; 2009 Jul 01; 20(26):264014. PubMed ID: 19509441
    [Abstract] [Full Text] [Related]

  • 9. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L, Okatan MB, Li Q, Kravenchenko II, Lavrik NV, Kalinin SV, Rodriguez BJ, Jesse S.
    Nanotechnology; 2015 May 01; 26(17):175707. PubMed ID: 25851168
    [Abstract] [Full Text] [Related]

  • 10. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices.
    Wagner T, Beyer H, Reissner P, Mensch P, Riel H, Gotsmann B, Stemmer A.
    Beilstein J Nanotechnol; 2015 May 01; 6():2193-206. PubMed ID: 26734511
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy.
    Giessibl FJ.
    Science; 1995 Jan 06; 267(5194):68-71. PubMed ID: 17840059
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G, Halpern E, Nanayakkara SU, Luther JM, Held C, Bennewitz R, Boag A, Rosenwaks Y.
    Nanotechnology; 2013 Jul 26; 24(29):295702. PubMed ID: 23807266
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T, Ono S.
    Ultramicroscopy; 2004 Aug 26; 100(3-4):287-92. PubMed ID: 15231321
    [Abstract] [Full Text] [Related]

  • 18. Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy.
    Palleau E, Ressier L, Borowik Ł, Mélin T.
    Nanotechnology; 2010 Jun 04; 21(22):225706. PubMed ID: 20453285
    [Abstract] [Full Text] [Related]

  • 19. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.
    Li S, Zhou Y, Zi Y, Zhang G, Wang ZL.
    ACS Nano; 2016 Feb 23; 10(2):2528-35. PubMed ID: 26824304
    [Abstract] [Full Text] [Related]

  • 20. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM, Kou L, Naitoh Y, Li YJ, Sugawara Y.
    Nanotechnology; 2013 Jun 07; 24(22):225701. PubMed ID: 23633495
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.