These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 21236521
21. Isosorbide-2-carbamate esters: potent and selective butyrylcholinesterase inhibitors. Carolan CG, Dillon GP, Gaynor JM, Reidy S, Ryder SA, Khan D, Marquez JF, Gilmer JF. J Med Chem; 2008 Oct 23; 51(20):6400-9. PubMed ID: 18817366 [Abstract] [Full Text] [Related]
22. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives. Castro MJ, Richmond V, Romero C, Maier MS, Estévez-Braun A, Ravelo AG, Faraoni MB, Murray AP. Bioorg Med Chem; 2014 Jul 01; 22(13):3341-50. PubMed ID: 24835788 [Abstract] [Full Text] [Related]
24. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y. Bioorg Med Chem; 2009 Sep 15; 17(18):6692-8. PubMed ID: 19692250 [Abstract] [Full Text] [Related]
32. Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Leonetti F, Catto M, Nicolotti O, Pisani L, Cappa A, Stefanachi A, Carotti A. Bioorg Med Chem; 2008 Aug 01; 16(15):7450-6. PubMed ID: 18585045 [Abstract] [Full Text] [Related]
34. Inhibition of two different cholinesterases by tacrine. Ahmed M, Rocha JB, Corrêa M, Mazzanti CM, Zanin RF, Morsch AL, Morsch VM, Schetinger MR. Chem Biol Interact; 2006 Aug 25; 162(2):165-71. PubMed ID: 16860785 [Abstract] [Full Text] [Related]
35. Design, synthesis and biological evaluation of ambenonium derivatives as AChE inhibitors. Bolognesi ML, Cavalli A, Andrisano V, Bartolini M, Banzi R, Antonello A, Rosini M, Melchiorre C. Farmaco; 2003 Sep 25; 58(9):917-28. PubMed ID: 13679187 [Abstract] [Full Text] [Related]
37. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. Malinak D, Dolezal R, Hepnarova V, Hozova M, Andrys R, Bzonek P, Racakova V, Korabecny J, Gorecki L, Mezeiova E, Psotka M, Jun D, Kuca K, Musilek K. J Enzyme Inhib Med Chem; 2020 Dec 25; 35(1):478-488. PubMed ID: 31910701 [Abstract] [Full Text] [Related]
39. Increasing Polarity in Tacrine and Huprine Derivatives: Potent Anticholinesterase Agents for the Treatment of Myasthenia Gravis. Galdeano C, Coquelle N, Cieslikiewicz-Bouet M, Bartolini M, Pérez B, Clos MV, Silman I, Jean L, Colletier JP, Renard PY, Muñoz-Torrero D. Molecules; 2018 Mar 11; 23(3):. PubMed ID: 29534488 [Abstract] [Full Text] [Related]
40. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields. Vitorović-Todorović MD, Juranić IO, Mandić LM, Drakulić BJ. Bioorg Med Chem; 2010 Feb 11; 18(3):1181-93. PubMed ID: 20061157 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]