These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Samadi A, de los Ríos C, Bolea I, Chioua M, Iriepa I, Moraleda I, Bartolini M, Andrisano V, Gálvez E, Valderas C, Unzeta M, Marco-Contelles J. Eur J Med Chem; 2012 Jun; 52():251-62. PubMed ID: 22503231 [Abstract] [Full Text] [Related]
48. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Katalinić M, Rusak G, Domaćinović Barović J, Sinko G, Jelić D, Antolović R, Kovarik Z. Eur J Med Chem; 2010 Jan; 45(1):186-92. PubMed ID: 19879672 [Abstract] [Full Text] [Related]
51. Design, synthesis and biological evaluation of benzo[e][1,2,4]triazin-7(1H)-one and [1,2,4]-triazino[5,6,1-jk]carbazol-6-one derivatives as dual inhibitors of beta-amyloid aggregation and acetyl/butyryl cholinesterase. Catto M, Berezin AA, Lo Re D, Loizou G, Demetriades M, De Stradis A, Campagna F, Koutentis PA, Carotti A. Eur J Med Chem; 2012 Dec; 58():84-97. PubMed ID: 23108363 [Abstract] [Full Text] [Related]
52. Selective inhibition of butyrylcholinesterase by singlet oxygen-generated melatonin derivatives. Moleda Z, Wojtasiewicz K, Panasiewicz M, Czarnocki Z. J Pineal Res; 2010 Aug; 49(1):55-9. PubMed ID: 20459459 [Abstract] [Full Text] [Related]
54. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking. Musilek K, Komloova M, Holas O, Horova A, Pohanka M, Gunn-Moore F, Dohnal V, Dolezal M, Kuca K. Bioorg Med Chem; 2011 Jan 15; 19(2):754-62. PubMed ID: 21215642 [Abstract] [Full Text] [Related]
55. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro. Utku S, Gökçe M, Orhan I, Sahin MF. Arzneimittelforschung; 2011 Jan 15; 61(1):1-7. PubMed ID: 21355440 [Abstract] [Full Text] [Related]
56. Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling. Akrami H, Mirjalili BF, Khoobi M, Nadri H, Moradi A, Sakhteman A, Emami S, Foroumadi A, Shafiee A. Eur J Med Chem; 2014 Sep 12; 84():375-81. PubMed ID: 25036795 [Abstract] [Full Text] [Related]
57. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Kapková P, Stiefl N, Sürig U, Engels B, Baumann K, Holzgrabe U. Arch Pharm (Weinheim); 2003 Nov 12; 336(11):523-40. PubMed ID: 14639745 [Abstract] [Full Text] [Related]
58. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases. Saeed A, Mahesar PA, Zaib S, Khan MS, Matin A, Shahid M, Iqbal J. Eur J Med Chem; 2014 May 06; 78():43-53. PubMed ID: 24675179 [Abstract] [Full Text] [Related]
59. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine. Tumiatti V, Rosini M, Bartolini M, Cavalli A, Marucci G, Andrisano V, Angeli P, Banzi R, Minarini A, Recanatini M, Melchiorre C. J Med Chem; 2003 Mar 13; 46(6):954-66. PubMed ID: 12620072 [Abstract] [Full Text] [Related]