These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 21236521
61. Synthesis of novel phosphorothioates and phosphorodithioates and their differential inhibition of cholinesterases. Kaboudin B, Emadi S, Hadizadeh A. Bioorg Chem; 2009 Aug; 37(4):101-5. PubMed ID: 19481235 [Abstract] [Full Text] [Related]
62. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A, Melchiorre C. J Med Chem; 2004 Nov 18; 47(24):5945-52. PubMed ID: 15537349 [Abstract] [Full Text] [Related]
63. Interaction of cycloSal-pronucleotides with cholinesterases from different origins. A structure-activity relationship. Meier C, Ducho C, Görbig U, Esnouf R, Balzarini J. J Med Chem; 2004 May 20; 47(11):2839-52. PubMed ID: 15139762 [Abstract] [Full Text] [Related]
64. Preparation, in vitro screening and molecular modelling of monoquaternary compounds related to the selective acetylcholinesterase inhibitor BW284c51. Benek O, Musilek K, Horova A, Dohnal V, Dolezal R, Kuca K. Med Chem; 2014 May 20; 11(1):21-9. PubMed ID: 24773345 [Abstract] [Full Text] [Related]
65. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, Parsons RB. Bioorg Med Chem; 2014 Jan 15; 22(2):906-16. PubMed ID: 24369842 [Abstract] [Full Text] [Related]
66. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors. Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Saxena A. J Med Chem; 2005 Mar 24; 48(6):1919-29. PubMed ID: 15771436 [Abstract] [Full Text] [Related]
67. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Pejchal V, Štěpánková Š, Pejchalová M, Královec K, Havelek R, Růžičková Z, Ajani H, Lo R, Lepšík M. Bioorg Med Chem; 2016 Apr 01; 24(7):1560-72. PubMed ID: 26947959 [Abstract] [Full Text] [Related]
68. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives. Saeed A, Zaib S, Ashraf S, Iftikhar J, Muddassar M, Zhang KY, Iqbal J. Bioorg Chem; 2015 Dec 01; 63():58-63. PubMed ID: 26440714 [Abstract] [Full Text] [Related]
69. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities. Zhan ZJ, Bian HL, Wang JW, Shan WG. Bioorg Med Chem Lett; 2010 Mar 01; 20(5):1532-4. PubMed ID: 20144867 [Abstract] [Full Text] [Related]
70. Synthesis of phenserine analogues and evaluation of their cholinesterase inhibitory activities. Shinada M, Narumi F, Osada Y, Matsumoto K, Yoshida T, Higuchi K, Kawasaki T, Tanaka H, Satoh M. Bioorg Med Chem; 2012 Aug 15; 20(16):4901-14. PubMed ID: 22831800 [Abstract] [Full Text] [Related]
71. Synthesis and biological activity of pyridinium-type acetylcholinesterase inhibitors. Alptüzün V, Kapková P, Baumann K, Erciyas E, Holzgrabe U. J Pharm Pharmacol; 2003 Oct 15; 55(10):1397-404. PubMed ID: 14607022 [Abstract] [Full Text] [Related]
72. The oxidation products of melatonin derivatives exhibit acetylcholinesterase and butyrylcholinesterase inhibitory activity. Siwicka A, Moleda Z, Wojtasiewicz K, Zawadzka A, Maurin JK, Panasiewicz M, Pacuszka T, Czarnocki Z. J Pineal Res; 2008 Aug 15; 45(1):40-9. PubMed ID: 18284552 [Abstract] [Full Text] [Related]
73. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands. Loewenstein Y, Gnatt A, Neville LF, Soreq H. J Mol Biol; 1993 Nov 20; 234(2):289-96. PubMed ID: 8230213 [Abstract] [Full Text] [Related]
74. Design, synthesis, and biological evaluation of acetophenone derivatives as dual binding acetylcholinesterase inhibitors. Shen Y, Li B, Xu H, Zhang G. Pharmazie; 2013 May 20; 68(5):307-10. PubMed ID: 23802426 [Abstract] [Full Text] [Related]
75. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site. Hadda TB, Talhi O, Silva ASM, Senol FS, Orhan IE, Rauf A, Mabkhot YN, Bachari K, Warad I, Farghaly TA, Althagafi II, Mubarak MS. Mini Rev Med Chem; 2018 May 20; 18(8):711-716. PubMed ID: 28714400 [Abstract] [Full Text] [Related]
78. Syntheses and characterization of novel oxoisoaporphine derivatives as dual inhibitors for cholinesterases and amyloid beta aggregation. Li YP, Ning FX, Yang MB, Li YC, Nie MH, Ou TM, Tan JH, Huang SL, Li D, Gu LQ, Huang ZS. Eur J Med Chem; 2011 May 20; 46(5):1572-81. PubMed ID: 21367493 [Abstract] [Full Text] [Related]
79. Design, synthesis and evaluation of some new 4-aminopyridine derivatives in learning and memory. Sinha SK, Shrivastava SK. Bioorg Med Chem Lett; 2013 May 15; 23(10):2984-9. PubMed ID: 23562059 [Abstract] [Full Text] [Related]
80. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Sawasdee P, Sabphon C, Sitthiwongwanit D, Kokpol U. Phytother Res; 2009 Dec 15; 23(12):1792-4. PubMed ID: 19548291 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]