These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


269 related items for PubMed ID: 21239642

  • 21. Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis.
    Zhou J, Wang X, He Y, Sang T, Wang P, Dai S, Zhang S, Meng X.
    Plant Cell; 2020 Aug; 32(8):2621-2638. PubMed ID: 32439826
    [Abstract] [Full Text] [Related]

  • 22. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis.
    Zhao Y, Wang J, Liu Y, Miao H, Cai C, Shao Z, Guo R, Sun B, Jia C, Zhang L, Gigolashvili T, Wang Q.
    Plant J; 2015 Mar; 81(6):920-33. PubMed ID: 25645692
    [Abstract] [Full Text] [Related]

  • 23. De novo genetic engineering of the camalexin biosynthetic pathway.
    Møldrup ME, Salomonsen B, Geu-Flores F, Olsen CE, Halkier BA.
    J Biotechnol; 2013 Sep 10; 167(3):296-301. PubMed ID: 23830903
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Activation of camalexin biosynthesis in Arabidopsis thaliana in response to perception of bacterial lipopolysaccharides: a gene-to-metabolite study.
    Beets CA, Huang JC, Madala NE, Dubery I.
    Planta; 2012 Jul 10; 236(1):261-72. PubMed ID: 22350766
    [Abstract] [Full Text] [Related]

  • 27. Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis.
    Zook M.
    Plant Physiol; 1998 Dec 10; 118(4):1389-93. PubMed ID: 9847113
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity.
    Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S.
    Plant Cell; 2016 May 10; 28(5):1144-62. PubMed ID: 27081184
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Function of phytochelatin synthase in catabolism of glutathione-conjugates.
    Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E.
    Plant J; 2007 Feb 10; 49(4):740-9. PubMed ID: 17253989
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment.
    Tolin S, Arrigoni G, Trentin AR, Veljovic-Jovanovic S, Pivato M, Zechman B, Masi A.
    Proteomics; 2013 Jun 10; 13(12-13):2031-45. PubMed ID: 23661340
    [Abstract] [Full Text] [Related]

  • 38. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin.
    Cargnel MD, Demkura PV, Ballaré CL.
    New Phytol; 2014 Oct 10; 204(2):342-54. PubMed ID: 25236170
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.